CH 2: Limits and Derivatives

2.5 Continuity

1. a function f is continuous at a number a if $\lim _{x \rightarrow a} f(x)=f(a)$ (i.e the function $f(x)$ approaches the value $f(a)$ as x gets closer to $a)$. This means $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=f(a)$
2. otherwise, a function could be continuous only on one side:
(a) a function f is continuous at a number a from the left if $\lim _{x \rightarrow a^{-}} f(x)=f(a)$.
(b) a function f is continuous at a number a from the right if $\lim _{x \rightarrow a^{+}} f(x)=f(a)$.
3. a function is continuous on an interval or set if it is continuous on every point in that interval
4. let f and g be continuous at a, then for some constant c these are continuous at a :
(a) $f \pm g$
(b) $f \cdot g$
(c) $\frac{f}{g}$, if $g \neq 0$
(d) constant multiple of either functions: $\mathrm{c} f$ and $\mathrm{c} g$
(e) composition of functions: $f \circ g$ and $g \circ f$
5. there are some classes of functions that are continuous everywhere on their domains:
(a) polynomials / rational / root functions
(b) exponential / logarithmic functions
(c) $|x|$
(d) $\sin x$ and $\cos x$ (but not $\tan x$)
(e) ANY COMBINATION OF THE ONES ABOVE IS CONTINUOUS ON ITS DOMAIN. That is, you only need to check continuity at the points where the function has a zero denominator or more than one piece of a function combined
6. the removable discontinuity is one where $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)$, but different than $f(a)$
7. the jump discontinuity is one where $\lim _{x \rightarrow a^{-}} f(x) \neq \lim _{x \rightarrow a^{+}} f(x)$
8. the infinite discontinuity is one where the function goes to infinity as x approaches a fixed value: $\lim _{x \rightarrow a^{-}} f(x)= \pm \infty$ and $\lim _{x \rightarrow a^{+}} f(x)= \pm \infty$
9. The Intermediate Value Theorem: If f is continuous on (a, b), then for each $N \in[f(a), f(b)]$, there is $c \in(a, b)$ such that $f(c)=N$. This means that a function will take all the image values between the numbers $f(a)$ and $f(b)$.

- helps identify if functions have roots: if say $f(a)<0$ and $f(b)>0$, the function will have a root in the interval (a, b)
- the value c may not be unique, and it guarantees the existence of the value c, it doesn't tell you how to find it.

