CH 2: Limits and Derivatives

2.5 Continuity

- 1. a function f is continuous at a number a if $\lim_{x \to a} f(x) = f(a)$ (i.e the function f(x) approaches the value f(a) as x gets closer to a). This means $\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = f(a)$
- 2. otherwise, a function could be continuous only on one side:
 - (a) a function f is continuous at a number a from the left if $\lim_{x \to a^-} f(x) = f(a)$.
 - (b) a function f is continuous at a number a from the right if $\lim_{x \to a} f(x) = f(a)$.
- 3. a function is continuous on an interval or set if it is continuous on every point in that interval
- 4. Let f and g be continuous at a, then for some constant c these are continuous at a:
 - (a) $f \pm g$
 - (b) $f \cdot g$
 - (c) $\frac{f}{g}$, if $g \neq 0$
 - (d) constant multiple of either functions: cf and cg
 - (e) composition of functions: $f \circ g$ and $g \circ f$
- 5. there are some classes of functions that are continuous everywhere on their **domains**:
 - (a) polynomials / rational / root functions
 - (b) exponential / logarithmic functions
 - (c) |x|
 - (d) $\sin x$ and $\cos x$ (but not $\tan x$)
 - (e) ANY COMBINATION OF THE ONES ABOVE IS CONTINUOUS ON ITS DOMAIN. That is, you only need to check continuity at the points where the function has a zero denominator or more than one piece of a function combined
- 6. the **removable discontinuity** is one where $\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x)$, but different than f(a)
- 7. the **jump discontinuity** is one where $\lim_{x \to a^-} f(x) \neq \lim_{x \to a^+} f(x)$
- 8. the infinite discontinuity is one where the function goes to infinity as x approaches a fixed value: $\lim_{x \to a^{-}} f(x) = \pm \infty$ and $\lim_{x \to a^{+}} f(x) = \pm \infty$
- 9. The Intermediate Value Theorem: If f is continuous on (a, b), then for each $N \in [f(a), f(b)]$, there is $c \in (a, b)$ such that f(c) = N. This means that a function will take all the image values between the numbers f(a) and f(b).
 - helps identify if functions have roots: if say f(a) < 0 and f(b) > 0, the function will have a root in the interval (a, b)
 - the value c may not be unique, and it guarantees the existence of the value c, it doesn't tell you how to find it.