2 Sets, Functions, Sequences, and Sums

2.6 Matrices

1. A matrix $A=\left[a_{i, j}\right]$ is a rectangular array of numbers with m rows and n columns $(1 \leq i \leq m, 1 \leq j \leq n)$. Each entry of the matrix is identify by its indices, such as $a_{1,2}$ is the entry in the first row second column.
2. The sum of matrices $A=\left[a_{i, j}\right]$ and $B=\left[b_{i, j}\right]$ is $A+B=\left[a_{i, j}+b_{i, j}\right]$, i.e. adding elements in the corresponding positions
3. The difference of matrices $A=\left[a_{i, j}\right]$ and $B=\left[b_{i, j}\right]$ is $A-B=\left[a_{i, j}-b_{i, j}\right]$, i.e. subtracting the elements in the corresponding positions
4. The product of an $m \times n$ matrix $A=\left[a_{i, j}\right]$ and an $n \times p$ matrix $B=\left[b_{i, j}\right]$ is the $m \times \overline{p \text { matrix }} A B=\left[c_{i, j}\right]$, where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j}=\sum_{k=1}^{n} a_{i k} b_{k j}$:

Figure 1: A diagram showing the multiplication of a 4×2 matrix A, by a 2×3 matrix B

$$
\left.\underset{2 \times 3}{\left[\begin{array}{rrr}
0 & 1 & -1 \\
2 & 0 & 3
\end{array}\right]} \underset{3 \times 4}{0} \begin{array}{rrrr}
0 & -1 & 1 & 0 \\
2 & 0 & -2 & 0 \\
1 & 0 & 3 & 1
\end{array}\right]=\underset{2 \times 4}{\left[\begin{array}{rrrr}
1 & 0 & -5 & -1 \\
3 & -2 & 11 & 3
\end{array}\right]} \underset{\underset{2 \times 4}{ }}{\substack{1 \\
\hline}}
$$

Figure 2: An example of multiplying a 2×3 matrix by a 3×4
5. To "divide" matrices, we introduce the inverse of a matrix, for a 2×2 matrix $A^{-1}=$

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]=\left[\begin{array}{cc}
\frac{d}{a d-b c} & \frac{-b}{a d-b c} \\
\frac{-c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right] \text {, where } a d-b c \neq 0
$$

6. We "divide" two matrices A and B by multiplying by the inverse: $A B^{-1}$
7. Note the following: $A+B=B+A, A-B \neq B-A, A B \neq B A, A B^{-1} \neq B^{-1} A$
8. A transpose of a matrix $A=\left[a_{i, j}\right]$ is $A^{T}=\left[a_{j, i}\right]$
9. The Boolean matrices (or zero-one matrices) are matrices whose entries are 0 and 1

- The identity matrix $I=\left[\begin{array}{ccccc}1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & & 0 & \cdots\end{array}\right]$
- The join of two elements: $a \vee b= \begin{cases}1 & \text { if } \mathrm{a}=1 \text { or } \mathrm{b}=1 \\ 0 & \text { otherwise }\end{cases}$
- The meet of two elements: $a \wedge b= \begin{cases}1 & \text { if } \mathrm{a}=1 \text { and } \mathrm{b}=1 \\ 0 & \text { otherwise }\end{cases}$
- The join of two $n \times m$ matrices A and B is $A \vee B=\left[\begin{array}{cccc}a_{11} \vee b_{11} & a_{12} \vee b_{12} & \cdots & a_{1 m} \vee b_{1 m} \\ a_{21} \vee b_{21} & a_{12} \vee b_{22} & \cdots & a_{2 m} \vee b_{2 m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} \vee b_{m 1} & a_{m 2} \vee b_{m 2} & \cdots & a_{m m} \vee b_{m m}\end{array}\right]$
- The $\underline{\text { meet }}$ of two $n \times m$ matrices A and B is $A \wedge B=\left[\begin{array}{cccc}a_{11} \wedge b_{11} & a_{12} \wedge b_{12} & \cdots & a_{1 m} \wedge b_{1 m} \\ a_{21} \wedge b_{21} & a_{12} \wedge b_{22} & \cdots & a_{2 m} \wedge b_{2 m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} \wedge b_{m 1} & a_{m 2} \wedge b_{m 2} & \cdots & a_{m m} \wedge b_{m m}\end{array}\right]$
- The Boolean product of an $m \times n$ matrix $A=\left[a_{i, j}\right]$ and an $n \times p$ matrix $B=\left[b_{i, j}\right]$ is the $m \times p$ matrix $A \odot B=\left[c_{i, j}\right]$, where $c_{i j}=\left(a_{i 1} \wedge b_{1 j}\right) \vee\left(a_{i 2} \wedge b_{2 j}\right) \vee \cdots \vee\left(a_{i n} \wedge b_{n j}\right)$

$$
\begin{aligned}
\mathbf{A}= & {\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] . } \\
\mathbf{A} \odot \mathbf{B} & =\left[\begin{array}{lll}
(1 \wedge 1) \vee(0 \wedge 0) & (1 \wedge 1) \vee(0 \wedge 1) & (1 \wedge 0) \vee(0 \wedge 1) \\
(0 \wedge 1) \vee(1 \wedge 0) & (0 \wedge 1) \vee(1 \wedge 1) & (0 \wedge 0) \vee(1 \wedge 1) \\
(1 \wedge 1) \vee(0 \wedge 0) & (1 \wedge 1) \vee(0 \wedge 1) & (1 \wedge 0) \vee(0 \wedge 1)
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 \vee 0 & 1 \vee 0 & 0 \vee 0 \\
0 \vee 0 & 0 \vee 1 & 0 \vee 1 \\
1 \vee 0 & 1 \vee 0 & 0 \vee 0
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right] .
\end{aligned}
$$

