CH 2: Limits and Derivatives

2.7 Derivatives and Rates of Change

1. a first step in finding what the behaviour of the function is, is to look at the derivative at one point, say at some point that we call $(a, f(a))$, such as $(3, f(3))$ (or just at $x=3$).
2. the slope of the tangent line to a curve at some point a gives the derivative of the function at the point a (for distance, the derivative gives the instantaneous rate of change, i.e. the speed). More exactly: if $f(x)$ is the curve, then the slope of the tangent line (if this limit exists) at the point $(a, f(a))$ is

$$
m=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

3. another way of writing that is in terms of a little change h in the x-value:

$$
m=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

This formula can be obtained if $h=x-a$ in the one above it.

4. And so, we define the derivative of $f(x)$ at the point a to be exactly the above limit, if the limit exists:

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h},
$$

and it gives the instantaneous rate of change with respect to x of the function $f(x)$ at the point a
5. now, one would have to apply this formula over and over for each value of a, but instead, Section $\S 2.8$ shows how to find the derivative at each point x, rather than just at one value a

