CH 3: Differentiation Rules

3.10 Linear Approximations

1. a linear approximation of a function f is a local approximation of a function by its tangent line at that point $x=a: f(x) \approx f(a)+f^{\prime}(a)(x-a)$.
2. this process is called linearization, and it helps estimate values of f at point nearby a
3. differentials: tell you how good your linearization is since $d y \neq \Delta y$ (unless your function is already linear).
4. Let f be a function, and let a and b be two input values. Then:

- $\Delta x=b-a$ which equals the the differential $d x=b-a$ (the change in the input)
- $f(x)=y \rightarrow f^{\prime}(x)=\frac{d y}{d x}$ and so the differential $d y=f^{\prime}(x) d x$
- $\Delta y=f(b)-f(a)$ (it is the change of the function from a to b).

