CH 3: Differentiation Rules

3.1 Derivatives of Polynomials and Exponential Functions

1. $\frac{d}{d x} f(x)$ is another notation for $f^{\prime}(x)$ that points out the variable you must take the derivative with respect to, namely x captured by the $d x$ in the denominator.
2. constants: $\frac{d}{d x}($ constant $)=0$
3. the power rule: $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$, for all real numbers n, particularly $\frac{d}{d x}(x)=1$
4. the sum rule: $\frac{d}{d x} f(x)+\frac{d}{d x} g(x)=\frac{d}{d x}(f(x)+g(x))$. Example: $\frac{d}{d x}\left(x^{7}+x\right)=7 x^{6}+1$
5. the difference rule: $\frac{d}{d x} f(x)-\frac{d}{d x} g(x)=\frac{d}{d x}(f(x)-g(x))$.

Example: $\frac{d}{d x}(\sqrt{x}-3)=\frac{d}{d x} \sqrt{x}-\frac{d}{d x} 3=\frac{1}{2} x^{-\frac{1}{2}}-0=\frac{1}{2 \sqrt{x}}$
6. the constant multiple rule: $\frac{d}{d x}(c \cdot f(x))=c \frac{d}{d x} f(x)$.

Example: $\frac{d}{d x}\left(3 x^{-7}\right)=3 \cdot \frac{d}{d x}\left(x^{-7}\right)=3 \cdot(-7) x^{-6}=-21 x^{-6}$
7. $f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{e^{h}-e^{0}}{h}=1$, meaning that the function e^{x} has a tangent line with a slope of 1 at $x=0$
8. the derivative of the natural exponential function: $\frac{d}{d x}\left(e^{x}\right)=e^{x}$,
9. the derivative of the natural \log function: $\frac{d}{d x}(\ln |x|)=\frac{1}{x}$,
10. recall: the secant line to a curve is the line that goes through 2 points on the graph (if the graph represents distance, then its slope is the average speed between the two points)
11. recall: the tangent line to a curve is the line that touches the graph exactly once at that point (if the graph represents distance, then its slope is the instantaneous speed at that point)
12. we define the normal line to a curve is the line that is perpendicular to the tangent line (if we have a 3 -dimensional surface, then we have a tangent plane that touches the surface at exactly one point, and the normal line is perpendicular to each line in this tangent plane and it helps find the equation of the plane - you'll see this in MA1115)

