CH 3: Differentiation Rules

3.5 Implicit Differentiation

1. implicit differentiation works particularly well when the derivative of y must be found, but we cannot solve for y in terms of x in order to find y^{\prime} (see example below)
2. used in finding the derivatives of functions of more than one variables, where the variables depend on each other. That is y is a function of x and chain rule must be used when taking the derivative of y with respect to x.
3. for example, if $x^{3}+y^{3}=6 x y$, find $\frac{d y}{d x}$ or y^{\prime} by taking the derivative of both sides of the equation:

$$
\begin{align*}
x^{3}+y^{3} & =6 x y \tag{1}\\
3 x^{2}+3 y^{2} \frac{d y}{d x} & =6 y+6 x \frac{d y}{d x} \tag{2}\\
\frac{d y}{d x} & =\frac{6 y-3 x^{2}}{3 y^{2}-6 x} \tag{3}\\
\frac{d y}{d x} & =\frac{2 y-x^{2}}{y^{2}-2 x} \tag{4}
\end{align*}
$$

4. the above solution can also be written as:

$$
\begin{align*}
x^{3}+y^{3} & =6 x y \tag{5}\\
3 x^{2}+3 y^{2} y^{\prime} & =6 y+6 x y^{\prime} \tag{6}\\
y^{\prime} & =\frac{6 y-3 x^{2}}{3 y^{2}-6 x} \tag{7}\\
y^{\prime} & =\frac{2 y-x^{2}}{y^{2}-2 x} \tag{8}
\end{align*}
$$

