CH 3: Differentiation Rules

3.9 Related rates

1. find a relation between the given quantities, and take the derivative of both sides of the equation to find the related rate.

FIGURE 1

FIGURE 2

EXAMPLE 2 A ladder 10 ft long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a rate of $1 \mathrm{ft} / \mathrm{s}$, how fast is the top of the ladder sliding down the wall when the bottom of the ladder is 6 ft from the wall?

SOLUTION We first draw a diagram and label it as in Figure 1. Let x feet be the distance from the bottom of the ladder to the wall and y feet the distance from the top of the ladder to the ground. Note that x and y are both functions of t (time, measured in seconds).

We are given that $d x / d t=1 \mathrm{ft} / \mathrm{s}$ and we are asked to find $d y / d t$ when $x=6 \mathrm{ft}$ (see Figure 2). In this problem, the relationship between x and y is given by the Pythagorean Theorem:

$$
x^{2}+y^{2}=100
$$

Differentiating each side with respect to t using the Chain Rule, we have

$$
2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0
$$

and solving this equation for the desired rate, we obtain

$$
\frac{d y}{d t}=-\frac{x}{y} \frac{d x}{d t}
$$

When $x=6$, the Pythagorean Theorem gives $y=8$ and so, substituting these values and $d x / d t=1$, we have

$$
\frac{d y}{d t}=-\frac{6}{8}(1)=-\frac{3}{4} \mathrm{ft} / \mathrm{s}
$$

The fact that $d y / d t$ is negative means that the distance from the top of the ladder to the ground is decreasing at a rate of $\frac{3}{4} \mathrm{ft} / \mathrm{s}$. In other words, the top of the ladder is sliding down the wall at a rate of $\frac{3}{4} \mathrm{ft} / \mathrm{s}$.

