4 Number Theory and Cryptography

4.1 Divisibility and Modular Arithmetic

This section introduces the basics, of number theory (number theory is the part of mathematics involving integers and their properties).

- 1. For $a, b \in \mathbb{Z}$, $a \neq 0$ we say that <u>a divides b</u>, written as a|b, if b = ak, $\exists k \in \mathbb{Z}$ (note that a|b is not the fraction a/b, but it rather shows that a is a factor of b)
- 2. $a \not| b$ if a is not a factor of b. Examples: $3 \mid 18$ but $3 \not| 20$.
- 3. Properties of a|b: Let $a,b,c\in\mathbb{Z},a\neq0$. Then:
 - $(a|b \wedge a|c) \rightarrow a|(b+c)$
 - $a|b \rightarrow a|(bc), \forall c \in \mathbb{Z}$
 - $(a|b \wedge b|c) \rightarrow a|c$
 - $(a|b \wedge a|c) \rightarrow a|(mb+nc), \forall m, n \in \mathbb{Z}$, which generalizes all the bullets
- 4. Division algorithm: $\forall a, d \in \mathbb{Z}$, with $d > 0 \Rightarrow \exists ! \ q, r \ (0 \le r < d)$ such that

$$a = dq + r,$$

where a is called the <u>dividend</u>, d is the <u>divisor</u>, q is the <u>quotient</u>, and r is the <u>remainder</u>. Note that a and d are the given integers, and q and r are the unique two integers that make a = dq + r true for the given a and d.

Example: Given 14 and 5, find the quotient q and the remainder r: $14 = 5 \cdot 2 + 4$, so q = 2 and r = 4, which are unique for the pair of numbers 14 and 5.

- 5. We define two functions on the set of integers:
 - $a \bmod m$ gives the remainder of a divided by m
 - $a \operatorname{\mathbf{div}} m$ gives the quotient of a divided by m

Example: $14 \mod 12 = 2$, and $14 \dim 12 = 1$, since $14 = 1 \cdot 12 + 2 -14 \mod 12 = 10$, and $-14 \dim 12 = -2$, since $-14 = -2 \cdot 12 + 10$ (note: $-14 = -1 \cdot 12 - 2$ does not work since r must satisfy $a \le r \le d$)

- 6. Theorem: $a \equiv b \pmod{m}$ iff $a \mod m = b \mod m$
- 7. $a \equiv b \pmod{m} \iff a \mod m = b \mod m \iff m | (a-b) \iff a = km + b$
- 8. Example: $14 \equiv 4 \pmod{5}$ since $14 \mod 5 = 4 \mod 5$ or since $5 \mid (14 4)$.
- 9. Additionally, $14 \not\equiv 2 \pmod{5}$ since $14 \mod 5 \neq 2 \mod 5$ or since $5 \not\mid (14-2)$
- 10. Modular arithmetic operations (they help evaluate numbers modulo m):
 - addition: $(a+b) \operatorname{mod} m = \left(a \operatorname{mod} m + b \operatorname{mod} m\right) \operatorname{mod} m$
 - subtraction: $(a-b) \operatorname{mod} m = \left(a \operatorname{mod} m b \operatorname{mod} m\right) \operatorname{mod} m$
 - multiplication: $(a \cdot b) \mod m = (a \mod m \cdot b \mod m) \mod m$
- 11. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then
 - $a + c \equiv b + d \pmod{m}$
 - $a c \equiv b d \pmod{m}$
 - $a \cdot c \equiv b \cdot d \pmod{m}$
 - $a\alpha \equiv b\alpha \pmod{m}$, for $\alpha > 0, m \ge 2, \alpha \in \mathbb{Z}$
- 12. This is not true for division (division is not defined for modular arithmetic. We will use cancellation with numbers that are relatively prime to m)
- 13. For each integer $m \geq 2$, we define $\mathbb{Z}_m = \{0, 1, 2, \dots, m-1\}$. And then we have the following arithmetic modulo m:
 - $a +_m b = a + b \operatorname{mod} m$
 - $a \cdot_m b = a \cdot b \operatorname{\mathbf{mod}} m$

For example $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$, and then we have the following:

$$3 +_5 4 = 2$$
 since $3 +_5 4 = 7 \mod 5 = 2$ and

$$3 \cdot_5 3 = 4 \text{ since } 3 \cdot_5 3 = 9 \operatorname{mod} 5 = 4.$$