## CH 4: Applications of Differentiation

### 4.10 Antiderivatives

1. The derivative of a function $f$ is $f^{\prime}$. The inverse operation gives that the antiderivative of $f^{\prime}$ is $f$
2. For a given function, the antiderivtive is not unique:

Example: consider $f(x)=x^{2}$.
Some antiderivative are $f(x)=\frac{x^{3}}{3}+7$ or $f(x)=\frac{x^{3}}{3}-37$.
There are actually infinitely many of them for each constant you add to $\frac{x^{3}}{3}$.
Thus, generally the antiderivative of $x^{2}$ is $f(x)=\frac{x^{3}}{3}+C$, where $C$ is a constant
3. Some standard antiderivatives, that you may obtain by taking inverse operation of derivatives:

| Function | Particular antiderivative | Function | Particular antiderivative |
| :---: | :---: | :---: | :---: |
| $c f(x)$ | $c F(x)$ | $\sin x$ | $-\cos x$ |
| $f(x)+g(x)$ | $F(x)+G(x)$ | $\sec ^{2} x$ | $\tan x$ |
| $x^{n}(n \neq-1)$ | $\frac{x^{n+1}}{n+1}$ | $\sec x \tan x$ | $\sec x$ |
| $\frac{1}{x}$ | $e^{x}$ | $\frac{1}{\sqrt{1-x^{2}}}$ | $\sin ^{-1} x$ |
| $e^{x}$ | $\frac{b^{x}}{\ln b}$ | $\cosh x$ | $\tan ^{-1} x$ |
| $b^{x}$ | $\sin x$ | $\sinh x$ | $\sinh x$ |
| $\cos x$ |  | $\cosh x$ |  |

