CH 4: Applications of Differentiation

4.10 Antiderivatives

- 1. The derivative of a function f is f'. The inverse operation gives that the antiderivative of f' is f
- 2. For a given function, the antiderivtive is not unique: Example: consider $f(x) = x^2$. Some antiderivative are $f(x) = \frac{x^3}{3} + 7$ or $f(x) = \frac{x^3}{3} - 37$. There are actually infinitely many of them for each constant you add to $\frac{x^3}{3}$. Thus, generally the antiderivative of x^2 is $f(x) = \frac{x^3}{3} + C$, where C is a constant
- 3. Some standard antiderivatives, that you may obtain by taking inverse operation of derivatives:

Function	Particular antiderivative	Function	Particular antiderivative
cf(x)	cF(x)	sin x	$-\cos x$
f(x) + g(x)	F(x) + G(x)	$\sec^2 x$	tan <i>x</i>
$x^n \ (n \neq -1)$	$\frac{x^{n+1}}{n+1}$	sec x tan x	sec x
$\frac{1}{x}$	$\ln x $	$\frac{1}{\sqrt{1-x^2}}$	$\sin^{-1}x$
e ^x	e^x	$\frac{1}{1+x^2}$	$\tan^{-1}x$
b^x	$\frac{b^x}{\ln b}$	cosh <i>x</i>	sinh x
$\cos x$	$\sin x$	sinh x	$\cosh x$