CH 4: Applications of Differentiation

4.1 Maximum and Minimum value

1. the local extrema of a functions are the local minimums and local maximums
2. a function $f(x)$ has a local maximum at $x=c$ if $f(c) \geq f(x)$ for all values x in some open interval around c
3. a function $f(x)$ has a local minimum at $x=c$ if $f(c) \leq f(x)$ for all values x in some open interval around c (open interval around c means that the immediate values to the left and to the right of c are in that open interval)
4. a function $f(x)$ has an absolute maximum at $x=c$ if $f(c) \geq f(x)$ for all values $x \in \operatorname{Domain}(f)$
5. a function $f(x)$ has an absolute minimum at $x=c$ if $f(c) \leq f(x)$ for all values $x \in \operatorname{Domain}(f)$
6. Fermat's Theorem: If f^{\prime} exists at a local/global maximum or minimum, then $f^{\prime}=0$ at that point.

7. Extreme Value Theorem:

f is continuous on $[a, b]$, then f has an absolute max at c and and absolute min at d, where

$$
c, d \in[a, b]
$$

8. a critical number of a function f is a number c in the domain of f such that either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist (particularly, local extrema are critical numbers)
9. Closed interval method: if f is continuous on a closed interval $[a, b]$, then the absolute min/max occur at the critical points or at the end points a or b
