CH 4: Applications of Differentiation

4.2 The Mean Value Theorem

1. Rolle's Theorem (helps find a root of the derivative on a given interval): If
(a) f is continuous on $[a, b]$,
(b) f is differentiable on (a, b), and
(c) $f(a)=f(b)$
then there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$

(a)

(b)

(c)

(d)
2. Mean Value Theorem (shows the existence of a point c where the slope of the tangent line to the function matches the slope of the secant line joining the end points of the interval): If
(a) f is continuous on $[a, b]$, and
(b) f is differentiable on (a, b),
then there is a number $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$

3. f is the constant function on $(a, b) \Longleftrightarrow f^{\prime}(x)=0$ for all values $x \in(a, b)$
4. if two functions have the same derivative, then they are vertical shifts of each other: $f(x)^{\prime}=g(x)^{\prime}$ then $f(x)^{\prime}-g(x)^{\prime}=0$ and so $f(x)-g(x)=$ constant, say $f(x)=g(x)+c$
