4 Number Theory and Cryptography

4.3 Primes and greatest common divisors

1. A prime p is an integer greater than 1 whose only positive factors are 1 and p (note that 2 is the smallest prime number, and the only even prime number). If an integer greater than 1 is not prime, then it is a composite number. Note that only integers that are greater than or equal to 2 are either primes or composite.
2. Fundamental Theorem of Arithmetic: every positive integer greater than 1 can be uniquely written as product of primes (where the factors are arranged in an increasing order)
i.e.: $n=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{\alpha}$, where $p_{i} \leq p_{i+1}$ for $1 \leq i \leq \alpha-1$
3. If n is a composite integer, then n has prime divisors less than or equal to \sqrt{n} (so in searching for divisors in a factorization of n, one should only look up to $\sqrt{n})$
4. There are infinitely many primes (Use contradiction assuming it is finite, and construct a new prime $p=p_{1} \cdot p_{2} \cdot \ldots p_{n}+1$)
5. The prime number theorem: The ratio of the number of primes not exceeding x and $\frac{x}{\ln x}$ approaches 1 as $x \rightarrow \infty$. Its usefulness comes in estimating the odds of choosing a random number that is prime (the distribution of primes).
6. gcd of two numbers $=$ greatest common divisor: $\operatorname{gcd}(12,30)=6$
7. lcm of two numbers $=$ least common multiple: $\operatorname{lcm}(12,30)=60$
8. Integers a and b are relatively prime (or also called coprimes) if $\operatorname{gcd}(a, b)=1$: The numbers 7 and 9 are relatively prime
9. The integers $a_{1}, a_{2}, \ldots, a_{n}$ are pairwise relatively prime if all of them are relatively prime pairwise (i.e. $\operatorname{gcd}\left(a_{i}, a_{j}\right)=1, \forall i, j$ with $\left.1 \leq i \neq j \leq n\right)$.
10. Note: $a b=\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)$
11. Euclidean Algorithm: gives an alternative way to find the gcd of two numbers a, and b, without using the prime factorization of the two numbers but rather the fact that $g c d(a, b)=\operatorname{gcd}(b, r)$, where r is the remainder (i.e. $a \bmod b=r$).
12. From above, we can write the $\operatorname{gcd}(a, b)=d$ as a linear combination $d=\alpha a+\beta b$, for some $\alpha, \beta \in \mathbb{Z}$
13. Particularly, if a and b are relatively prime, then $1=\alpha a+\beta b$, for some $\alpha, \beta \in \mathbb{Z}$
14. If p is a prime such that $p \mid\left(a_{1} \cdot a_{2} \cdot \ldots \cdot a_{n}\right)$, then $p \mid a_{i}$ for some $i(1 \leq i \leq n)$
15. Simplifications in modular arithmetic:

$$
\begin{gathered}
\text { if } a, b, c, m \in \mathbb{Z}(m>0) \text { and } \operatorname{gcd}(c, m)=1, \\
\text { then } a c \equiv b c(\bmod m) \Rightarrow a \equiv b(\bmod m)
\end{gathered}
$$

16. However, if $\operatorname{gcd}(c, m) \neq 1$, the above result doesn't hold
