CH 4: Applications of Differentiation

4.7 Optimization Problems

We now apply the methods learned to find the minimum and maximum of functions

1. elate the variables in the problem and obtain a function whose min/max will provide the answer. Steps In Solving Optimization Problems:

- Understand the Problem: The first step is to read the problem carefully until it is clearly understood. Ask yourself: What is the unknown? What are the given quantities? What are the given conditions?
- Draw a Diagram: In most problems it is useful to draw a diagram and identify the given and required quantities on the diagram.
- Introduce Notation: Assign a symbol to the quantity that is to be maximized or minimized (let's call it Q for now). Also select symbols say a, b, c, \ldots, x, y for other unknown quantities and label the diagram with these symbols.

2. First derivative Test:

- if f^{\prime} changes form positive to negative, then f has a local maximum on that interval
- if f^{\prime} changes form negative to positive, then f has a local minimum on that interval
- if f^{\prime} does not change sign on an interval, then f has no local extrema on that interval

(a) Local maximum

(b) Local minimum

(c) No maximum or minimum

(d) No maximum or minimum

