CH 5: Integrals

5.2 The Definite Integral

1. The definite integral of a function $f(x)$ from $x=a$ to $x=b$ is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

where $\Delta x=\frac{b-a}{n}$ and $x_{i}=a+i \Delta x$ provided that the limit above exists. If it does exits, then the function is integrable, and the value of the integral represents the area under the curve $f(x)$ on the interval $[a, b]$. If the limit doesn't exist, then the function is not integrable.
2. If the function is continuous on $[a, b]$ then it is integrable.
3. also, if a function has only finitely many jump discontinuities, then the function is integrable
4. in evaluating the above limits, one will make use of the following summations:

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} \quad \sum_{i=1}^{n} i^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

5. the area that is below the x-axis counts as negative area
6. properties of integral:
(a) $\int_{a}^{b} c d x=c(b-a)$, where c is a constant
(b) $\int_{a}^{b} f(x)+g(x) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
(c) $\int_{a}^{b} f(x)-g(x) d x=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x$
(d) $\int_{a}^{b} c \cdot f(x) d x=c \int_{a}^{b} f(x) d x$
(e) if $f(x) \geq 0$ when $x \in[a, b]$, then $\int_{a}^{b} f(x) d x \geq 0$
(f) if $f(x) \geq g(x)$ when $x \in[a, b]$, then $\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x$
(g) if $\min f(x) \leq f(x) \leq \max f(x)$ when $x \in[a, b]$, then $(\min f(x)) \cdot(b-a) \leq \int_{a}^{b} f(x) d x \leq$ $(\max f(x)) \cdot(b-a)$
However, rules (b) and (c) above do not work for multiplication and division, just like they didn't work for derivatives. We will learn techniques for that soon.
