5 Induction and Recursion

5.3 Recursive Definitions \& Structural Induction

In this section we introduce recursive definitions (or inductive definitions).
They are used when it is difficult/impossible to define the function directly:

1. Recursively Defined Functions use two steps to define it:
(a) Basis Step: provide $f(0)$
(b) Inductive Step: define $f(n)$ based on the values of f evaluated for smaller positive n values

Example: $f(0)=1$ and $f(n+1)=2 f(n), n \geq 0$
2. A sequence is an ordered list of elements: $a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$

Example of a sequence, $s_{1}: 1,2,3,4, \ldots$ and a different sequence $s_{2}: 1,3,2,4,5,6, \ldots$
3. A sequence is also defined as a function $f: \mathbb{N} \rightarrow$ set of sequences, by $f(n)=a_{n}, n \geq 0$. Example for the first sequence s_{1} above: $f(0)=a_{0}=1, f(1)=a_{1}=2$, and in general for s_{1} : $f(n)=a_{n}=n+1$
4. Recursively Defined Sequences follow the recursively defined functions:
(a) Basis Step: provide a_{0}
(b) Inductive Step: define a_{n} based on the value of previous terms of the sequence.

Example 1: $a_{0}=1$ and $a_{n+1}=2 a_{n}, n \geq 0$
Example 2: $a_{0}=1$ and $a_{1}=3$ and $a_{n+1}=a_{n}+a_{n-1}, n \geq 1$
5. Fibonacci numbers: $f_{0}=1, f_{1}=1$, and $f_{n}=f_{n-1}+f_{n-2}, n \geq 2$ (either as the Fibonacci sequence as given above, or the Fibonacci function as $f(n)$ function)
6. Recursively Defined Sets follow the recursively defined functions:
(a) Basis Step: provide initial element(s) in S
(b) Inductive Step: define new elements as a combination of existing elements

Example: $1 \in S$ and if $x \in S \wedge y \in S$ then $x+y \in S$
7. Structural induction is math or strong induction applied to recursively defined functions/sets...

