5 Induction and Recursion

5.3 Recursive Definitions & Structural Induction

In this section we introduce recursive definitions (or inductive definitions). They are used when it is difficult/impossible to define the function directly:

- 1. Recursively Defined Functions use two steps to define it:
 - (a) **Basis Step**: provide f(0)
 - (b) **Inductive Step**: define f(n) based on the values of f evaluated for smaller positive n values

Example: f(0) = 1 and $f(n+1) = 2f(n), n \ge 0$

- 2. A sequence is an ordered list of elements: $a_1, a_2, a_3, \ldots, a_n, \ldots$ Example of a sequence, $s_1 : 1, 2, 3, 4, \ldots$ and a different sequence $s_2 : 1, 3, 2, 4, 5, 6, \ldots$
- 3. A sequence is also defined as a function $f : \mathbb{N} \to \text{set of sequences, by } f(n) = a_n, n \ge 0$. Example for the first sequence s_1 above: $f(0) = a_0 = 1, f(1) = a_1 = 2$, and in general for s_1 : $f(n) = a_n = n + 1$
- 4. Recursively Defined Sequences follow the recursively defined functions:
 - (a) **Basis Step**: provide a_0
 - (b) **Inductive Step**: define a_n based on the value of previous terms of the sequence.

Example 1: $a_0 = 1$ and $a_{n+1} = 2a_n$, $n \ge 0$ Example 2: $a_0 = 1$ and $a_1 = 3$ and $a_{n+1} = a_n + a_{n-1}$, $n \ge 1$

- 5. Fibonacci numbers: $f_0 = 1, f_1 = 1$, and $f_n = f_{n-1} + f_{n-2}, n \ge 2$ (either as the Fibonacci sequence as given above, or the Fibonacci function as f(n) function)
- 6. Recursively Defined Sets follow the recursively defined functions:
 - (a) **Basis Step**: provide initial element(s) in S
 - (b) **Inductive Step**: define new elements as a combination of existing elements

Example: $1 \in S$ and if $x \in S \land y \in S$ then $x + y \in S$

7. Structural induction is math or strong induction applied to recursively defined functions/sets...