5.4 Indefinite Integral and the Net Change Theorem

1. Recall the definite integral is $\int_{a}^{b} f(t) d t=F(b)-F(a)$, and the answer is a number that gives the area under the function $f(x)$ from point $x=a$ to $x=b$.
2. If F is the antiderivative of f, then the indefinite integral is $\int f(t) d t=F(t)$, and the answer is a a function.

$$
\begin{array}{ll}
\int c f(x) d x=c \int f(x) d x & \int[f(x)+g(x)] d x=\int f(x) d x+\int g(x) d x \\
\int k d x=k x+C & \\
\int x^{n} d x=\frac{x^{n+1}}{n+1}+C \quad(n \neq-1) & \int \frac{1}{x} d x=\ln |x|+C \\
\int e^{x} d x=e^{x}+C & \int b^{x} d x=\frac{b^{x}}{\ln b}+C \\
\int \sin x d x=-\cos x+C & \int \cos x d x=\sin x+C \\
\int \sec ^{2} x d x=\tan x+C & \int \csc x \cot x d x=-\csc x+C \\
\int \sec x \tan x d x=\sec x+C & \int \frac{1}{\sqrt{1-x^{2}}} d x=\sin -1 x+C \\
\int \frac{1}{x^{2}+1} d x=\tan -1 x+C & \int \cosh x d x=\sinh x+C \\
\int \sinh x d x=\cosh x+C &
\end{array}
$$

3. the net change theorem: $\int_{a}^{b} F^{\prime}(t) d t=F(b)-F(a)$, where note the the integrand F^{\prime} is the derivative of the right hand side function F. Again, area below the x-axis is negative, so it gets subtracted off the area above the x-axis.
4. if the function F^{\prime} is a velocity for example, then F is displacement, and it can be negative or positive depending on which direction the object moves
