CH 5: Integrals

5.5 The Substitution Rule

1. If $u=g(x)$ is a differentiable function, then the reverse of chain rule works: $\int f((g(x))) g^{\prime}(x) d x=\int f(u) d u$
2. Notice how this works with $u=3 x$ so $d u=3 d x$

$$
\int \sin (3 x) \cdot 3 d x=\int \sin u d u=-\cos (u)+C=-\cos (3 x)+C
$$

3. if we only have

$$
\int \sin (3 x) d x=\frac{1}{3} \int \sin (3 x) \cdot 3 d x=\frac{1}{3} \int \sin u d u=-\frac{1}{3} \cos (u)+C=-\frac{1}{3} \cos (3 x)+C
$$

where $u=3 x$ so $d u=3 d x$
4. for definite integrals, when $u=3 x$ so $d u=3 d x$, we also change the limits:
when $x=0$ then $u=3 \cdot 0$, and when $x=\pi / 2$ we have $u=3 \cdot \pi / 2$:

$$
\int_{0}^{\pi / 2} \sin (3 x) \cdot 3 d x=\int_{3 \cdot 0}^{3 \cdot \pi / 2} \sin u d u=-\cos (u)+C=-\left.\cos (3 x)\right|_{0} ^{3 \pi / 2}=-(0-1)=1
$$

5. Two shortcuts for an integral over a symmetric interval $[-a, a]$:
(a) if f is even (i.e. $f(-x)=f(x)$) then $\int_{a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$, which might be easier to computer at 0 instead of $-a$
(b) if f is odd (i.e. $f(-x)=f(x))$ then $\int_{a}^{a} f(x) d x=0$. because it is symmetric with the origin, and the area below the x-axis is negative.
