6 Counting

6.1 The Basics of Counting

1. The basic principles of counting shown below generalize to more than 2 sets.
2. The product rule counts the number of ways a choice can be made from each of two sets of alternatives: Suppose a procedure can be broken down into a sequence of two tasks, where A is the set of choices for task 1 , and B is the set of choices for task 2 . Then the total number of choices for performing the procedure is

$$
|A \times B|=|A||B|
$$

Example: On a restaurant's menu there are 2 choices of soup and 4 choices of salads. Then the number of choices of soup and salad: $2 \cdot 4=8$.
3. The sum rule counts the number of ways a single choice can be made from two disjoint sets of alternatives: If

$$
A \cap B=\emptyset \rightarrow|A \cup B|=|A|+|B|
$$

Example: On a restaurants menu there are 2 choices of soup and 4 choices of salads. Then the number of choices of soup or salad: $2+4=6$ choices (note that there is no overlap between the choices).
4. The Principle of Inclusion-Exclusion or the subtraction rule extends the sum rule to situations in which the two sets of alternatives are not disjoint. If two sets A and B are not disjoint, say

$$
A \cap B \neq \emptyset \rightarrow|A \cup B|=|A|+|B|-|A \cap B|
$$

To see this, note that if $x \in A \cap B$, then x is counted twice in $|A|+|B|$, namely once in $|A|$ and once in $|B|$. So we must subtract $|A \cap B|$ to correct the overcount.
5. The division rule: There are

$$
\frac{n}{d}
$$

ways to do a task if it can be done using a procedure that can be carried out in n ways, and for every way w, exactly d of the n ways correspond to way w.

In other words, in a collection of n colored objects, where each color has the same number of d elements, there are $\frac{n}{d}$ different colors. The division rule allows us divide the total number by the number of duplications (it is the multiplication principle as a division).

