6 Counting

6.3 Permutations and Combinations

1. A permutation is an ordering, or arrangement, of the elements in a finite set:

Definition: A permutation π of $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is an ordering $a_{\pi_{1}}, a_{\pi_{2}}, \ldots, a_{\pi_{n}}$ of the elements of A (no repeats in the list).
Example: a permutation of $A=\{1,2,3\}$ is $1,3,2$ and another one is $1,2,3$

- There are n ! permutations of an n-element set (an n-element set is also called an n-set). For integers $n \geq 0$, the factorial $f(n)=n$! can be recursively defined by

$$
n!=(n-1)!\cdot n \quad \text { with } \quad 0!=1
$$

2. An r-permutation of an n-set $A(r \leq n)$ is an ordering $a_{\pi_{1}}, a_{\pi_{2}}, \ldots, a_{\pi_{r}}$ of some r-subset of A.
Example: some 3-permutation of $A=\{1,2,3,4\}$ are: 1, 4, 3, 2, 4, 3, 2, 3, 4

- There are $P(n, r)$ of r-permutation of an n-set:

$$
P(n, r)=n(n-1)(n-2) \cdots(n-r+1)=\frac{n(n-1) \cdots(n-r+1) \cdots(2)(1)}{(n-r)(n-r-1) \cdots(2)(1)}=\frac{n!}{(n-r)!} .
$$

3. An r-combination of an n-set $A(r \leq n)$ is an r-subset $\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{r}}\right\}$ of the n-set A. Example: For the 4 -set $A=\{1,2,3,4\}$, some 3 -combinations are: $\{2,4,3\},\{2,4,5\},\{1,4,3\}$

- There are $C(n, r) r$-combination of an n-set. We construct an r-permutation of an n-set in two steps: first take an r-combination, then take a permutation of the r-combination. It follows by the Product Rule that

$$
P(n, r)=r!\cdot C(n, r)
$$

$$
\begin{aligned}
& \text { but then } \\
& \qquad C(n, r)=\frac{1}{r!} \cdot P(n, r)=\frac{n!}{r!(n-r)!} \\
& C(n, r)=\frac{n!}{r!(n-r)!}=\frac{n(n-1) \cdots(n-r+1)(n-r)!}{r!(n-r)!}=\frac{n(n-1) \cdots(n-r+1)}{r!}
\end{aligned}
$$

- Note the symmetry in combinations:

$$
C(n, r)=\frac{n!}{r!(n-r)!}=\frac{n!}{(n-r)!r!}=\frac{n!}{(n-r)!(n-(n-r))!}=C(n, n-r)
$$

- $C(n, r)$ is commonly written $\binom{n}{r}$, which is called a binomial coefficient.

