CH 7: Techniques for Integration

7.1 Integration by Parts

1. Diff by parts (the "reverse of product rule" for indefinite integrals we have:

$$
\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int g(x) f^{\prime}(x) d x
$$

or simplified:

$$
\int u d v=u v-\int v d u
$$

2. Diff by parts for definite integrals:

$$
\int_{a}^{b} f(x) g^{\prime}(x) d x=\left.f(x) g(x)\right|_{a} ^{b}-\int_{a}^{b} g(x) f^{\prime}(x) d x
$$

3. Why?

The Product Rule states that if f and g are differentiable functions, then

$$
\frac{d}{d x}[f(x) g(x)]=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)
$$

In the notation for indefinite integrals this equation becomes

$$
\begin{gathered}
\int\left[f(x) g^{\prime}(x)+g(x) f^{\prime}(x)\right] d x=f(x) g(x) \\
\int f(x) g^{\prime}(x) d x+\int g(x) f^{\prime}(x) d x=f(x) g(x)
\end{gathered}
$$

We can rearrange this equation as

$$
\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int g(x) f^{\prime}(x) d x
$$

