9 Relations

9.4 Closure of Relations

The closure of a relation is with respect to a property of the relation:

- 1. <u>Reflexive closure of R</u>: the reflexive relation S such that $R \subseteq S$, and |S| is the smallest among all such possible relations How do we find reflexive closure S?
 - Define the diagonal relation $\Delta = \{(a, a) | \forall a \in A\}$. Then $S = R \cup \Delta$
- 2. Symmetric closure of R: the symmetric relation S such that $R \subseteq S$, and |S| is the smallest among all such possible relations How do we find symmetric closure S?
 - Define the inverse relation $R^{-1} = \{(b, a) | \forall (a, b) \in R\}$. Then $S = R \cup R^{-1}$
- 3. <u>Transitive closure of R</u>: the transitive relation S such that $R \subseteq S$, and |S| is the smallest among all such possible relations How do we find transitive closure S?
 - Define a path of length n from a to b in a directed graph is a sequence of n edges $(a, a_1), (a_1, a_2), (a_2, a_3), \ldots, (a_{n-1}, b) \exists n \geq 2$. We can denote the path just by the vertices: $a, a_1, a_2, \ldots, a_{n-1}, b$
 - A circuit is a closed path, i.e. a = b
 - $(a,b) \in \mathbb{R}^n$ iff \exists an a-b path of length n
 - $S = R^*$, where the connectivity relation $R^* = \bigcup_{n=1}^{\infty} R^n$, i.e. it consists of all elements (a, b) such that there is an a b path.
 - The associated matrix, $M_{R^*} = M_R \vee M_R^{[2]} \vee M_R^{[3]} \vee \ldots \vee M_R^{[n]}$, where $A^{[2]}$ is the Boolean product $A \odot A = (a_{i1} \wedge a_{1j}) \vee (a_{i2} \wedge a_{2j}) \vee \cdots \vee (a_{in} \wedge a_{nj})$ $A^{[3]}$ is the Boolean product $A^{[2]} \odot A$ and so on

```
ALGORITHM 1 A Procedure for Computing the Transitive Closure. ALGORITHM 2 Warshall Algorithm.
```

```
procedure transitive closure (\mathbf{M}_R : zero–one n \times n matrix)
                                                                                                                procedure Warshall (\mathbf{M}_R : n \times n zero–one matrix)
\mathbf{A} := \mathbf{M}_R
                                                                                                                \mathbf{W} := \mathbf{M}_R
\mathbf{B} := \mathbf{A}
                                                                                                                for k := 1 to n
for i := 2 to n
                                                                                                                       for i := 1 to n
    \mathbf{A} := \mathbf{A} \odot \mathbf{M}_R
                                                                                                                               for j := 1 to n
                                                                                                                              w_{ij} := w_{ij} \lor (w_{ik} \land w_{kj})
    \mathbf{B} := \mathbf{B} \vee \mathbf{A}
                                                                                                                return \mathbf{W}{\mathbf{W} = [w_{ii}] \text{ is } \mathbf{M}_{R^*}}
return B{B is the zero–one matrix for R^*}
                                                                                                                     (b) Alg 2: Warshall's Algorithm
                                        (a) Algorithm 1
```