9 Relations

9.4 Closure of Relations

The closure of a relation is with respect to a property of the relation:

1. Reflexive closure of R : the reflexive relation S such that $R \subseteq S$, and $|S|$ is the smallest among all such possible relations
How do we find reflexive closure S ?

- Define the diagonal relation $\Delta=\{(a, a) \mid \forall a \in A\}$. Then $S=R \cup \Delta$

2. Symmetric closure of R : the symmetric relation S such that $R \subseteq S$, and $|S|$ is the smallest among all such possible relations
How do we find symmetric closure S ?

- Define the inverse relation $R^{-1}=\{(b, a) \mid \forall(a, b) \in R\}$. Then $S=R \cup R^{-1}$

3. Transitive closure of R : the transitive relation S such that $R \subseteq S$, and $|S|$ is the smallest among all such possible relations How do we find transitive closure S ?

- Define a path of length n from a to b in a directed graph is a sequence of n edges $\left(a, a_{1}\right),\left(a_{1}, a_{2}\right),\left(a_{2}, a_{3}\right), \ldots,\left(a_{n-1}, b\right) \exists n \geq 2$. We can denote the path just by the vertices: $a, a_{1}, a_{2}, \ldots, a_{n-1}, b$
- A circuit is a closed path, i.e. $a=b$
- $(a, b) \in R^{n}$ iff \exists an $a-b$ path of length n
- $S=R^{*}$, where the connectivity relation $R^{*}=\bigcup_{n=1}^{\infty} R^{n}$, i.e. it consists of all elements (a, b) such that there is an $a-b$ path.
- The associated matrix, $M_{R^{*}}=M_{R} \vee M_{R}^{[2]} \vee M_{R}^{[3]} \vee \ldots \vee M_{R}^{[n]}$, where $A^{[2]}$ is the Boolean product $A \odot A=\left(a_{i 1} \wedge a_{1 j}\right) \vee\left(a_{i 2} \wedge a_{2 j}\right) \vee \cdots \vee\left(a_{i n} \wedge a_{n j}\right)$ $A^{[3]}$ is the Boolean product $A^{[2]} \odot A$ and so on

```
ALGORITHM1 A Procedure for Computing the Transitive Closure. ALGORITHM 2 Warshall Algorithm.
```

procedure transitive closure (\mathbf{M}_{R} : zero-one $n \times n$ matrix)
$\mathbf{A}:=\mathbf{M}_{R}$
$\mathbf{B}:=\mathbf{A}$
for $i:=2$ to n
$\mathbf{A}:=\mathbf{A} \odot \mathbf{M}_{R}$
$\mathbf{B}:=\mathbf{B} \vee \mathbf{A}$
return $\mathbf{B}\left\{\mathbf{B}\right.$ is the zero-one matrix for $\left.R^{*}\right\}$
(a) Algorithm 1
procedure Warshall ($\mathbf{M}_{R}: n \times n$ zero-one matrix) $\mathbf{W}:=\mathbf{M}_{R}$ for $k:=1$ to n
for $i:=1$ to n
for $j:=1$ to n
$w_{i j}:=w_{i j} \vee\left(w_{i k} \wedge w_{k j}\right)$
return $\mathbf{W}\left\{\mathbf{W}=\left[w_{i j}\right]\right.$ is $\left.\mathbf{M}_{R^{*}}\right\}$
(b) Alg 2: Warshall's Algorithm

