CH 2: Limits and Derivatives

2.6 Limits at Infinity: Horizontal Asymptotes

1. If f is defined on some interval (a, ∞), then $\lim _{x \rightarrow \infty} f(x)=L$ if $f(x)$ approaches L as x takes very large values.

2. If f is defined on some interval $(-\infty, a)$, then $\lim _{x \rightarrow-\infty} f(x)=L$ if $f(x)$ approaches L as x takes very small values (or large negatives).

3. examples: $\lim _{x \rightarrow \infty} \frac{1}{x^{n}}=0$ and $\lim _{x \rightarrow-\infty} \frac{1}{x^{n}}=0$ You can see this from the graph of $\frac{1}{x}$

4. computing the limits at infinity: divide by the highest power of x in the denominator and use $\lim _{x \rightarrow \infty} \frac{1}{x^{n}}=0$ if $n \geq 0$. The numerator must be any nonzero number. Similarly for $x \rightarrow-\infty$
5. the following are not defined: $\infty-\infty, 0 \cdot \infty, \pm \frac{\infty}{\infty}, \frac{0}{0}$
6. these are defined: $\infty+\infty=\infty \quad-\infty-\infty=-\infty \quad e^{\infty}=\infty \quad \infty \cdot \infty=\infty \quad-\infty \cdot \infty=-\infty$
