Prof. Ralucca Gera, rgera@nps.edu Applied Mathematics Department, Naval Postgraduate School

MA4404 Complex Networks

Power Law and Scale Free Networks

Learning Outcomes

- Understand the different models of presenting distributions.
- Understand what is a power law distribution
- Understand what is a scale free network

Power law distributions

- Power law distribution: $p_k = \alpha k^{-c}, c > 0$ also called Pareto distributions (Vilfredo Pareto)
- Differentiating power-law from non power-law distributions is not trivial
 - Simplest (but not accurate) strategy → visual inspection plots
 - In 2006 fit a distribution over the observed data, and test the goodness of the fit. This analysis revealed that none of them fits the theoretical distribution
- There are alternatives as we will see

https://www.researchgate.net/figure/Power-law-and-exponentialdistributions-a-Normal-scale-b-Log-log-scale_fig1_228879251

An example: Egypt IP-layer data

0.8.2 - egypt	tDailyRevolt(CAIDA.gephi	and the owner where the		
kspace View	Tools Win	dow Plugins	Help		
verview	Data	a Laboratory	Pr		
Clustering	Ranking %				
jes			🥥 🔻 🖄 🔊		
			•		
_		•			
0		0			
	0.8.2 - egypt cspace View verview Clustering jes	0.8.2 - egyptDailyRevolt0 cspace View Tools Win verview Data Clustering Ranking % jes	0.8.2 - egyptDailyRevoltCAIDA.gephi (space View Tools Window Plugins (verview Data Laboratory Clustering Ranking % ges		

And its degree distribution

Results:

Average Weighted Degree: 4.812

Hard to differentiate the values \rightarrow can this visualization be improved to be useful? How?

BA Example (n=1000)

Binning

A binned degree histogram will give poor statistics at the tail of the distribution

• As k gets large, in every bin there will be only a few samples \rightarrow large statistical fluctuations in the number of samples from bin to bin \rightarrow which makes

the tail end noisy and difficult to decide if it follows a power-law

Detecting and visualizing power laws

Alternatives:

- We could use larger bins to reduce the noise at the tail since more samples fall in the same bin
 - However, this reduces the detail captured from the histogram since we end up with fewer bins

Detecting and visualizing power laws

Alternatives:

Try to get the best of both worlds \rightarrow different bin sizes in different parts of the histogram

Careful at normalizing the bins correctly: a bin of width 10 will get 10 times more samples compared to the previous bin of width $1 \rightarrow$ divide the count number by 10 \rightarrow logarithmic view (log-log plots)

In this scheme each bin is made wider than its predecessor by a constant factor a

The 1-st bin will cover the range: $10^0 \le k < 10^1$

The 2-nd bin will cover the range: $10^1 \le k < 10^2$

The 3-rd bin will cover the range: $10^2 \le k < 10^3$

The most common choices for *a* are 2 and 10 since larger values of *a* give ranges that are too big, and smaller *a* values give non-integer ranges limits The *n*-th bin will cover the range: $a^{n-1} \le k < a^n$

Logarithmic binning

• Plot the degree distribution for the Internet in log-log scale: width of the bins is fixed, the display of the width is different

Statistics for real *networks*

					α =	= powe	er in th	ne powe	er law	distrik	outior
	Network	Туре	n	m	С	S	e	α	С	Cws	
Social	Film actors	Undirected	449 913	25 516 482	113.43	0.980	3.48	2.3	0.20	0.78	0.:
	Company directors	Undirected	7673	55 392	14.44	0.876	4.60	_	0.59	0.88	0.:
	Math coauthorship	Undirected	253 339	496 489	3.92	0.822	7.57	-	0.15	0.34	0.
	Physics coauthorship	Undirected	52,909	245 300	9.27	0.838	6.19		0.45	0.56	0.:
	Biology coauthorship	Undirected	1520251	11 803 064	15.53	0.918	4.92	_	0.088	0.60	0.
	Telephone call graph	Undirected	47 000 000	80 000 000	3.16			2.1	A. Gerensen e		
	Email messages	Directed	59812	86300	1.44	0.952	4.95	1.5/2.0		0.16	
	Email address books	Directed	16881	57 029	3.38	0.590	5.22		0.17	0.13	0.1
	Student dating	Undirected	573	477	1.66	0.503	16.01		0.005	0.001	-0.0
	Sexual contacts	Undirected	2810					3.2			
Information	WWW nd.edu	Directed	269 504	1 497 135	5.55	1.000	11.27	2.1/2.4	0.11	0.29	-0.1
	WWW AltaVista	Directed	203 549 046	1466 000 000	7.20	0.914	16.18	2.1/2.7	Steelers.		
	Citation network	Directed	783 339	6716198	8.57			3.0/-			
	Roget's Thesaurus	Directed	1022	5103	4.99	0.977	4.87	-	0.13	0.15	0.
	Word co-occurrence	Undirected	460 902	16 100 000	66.96	1.000		2.7		0.44	
Technological	Internet	Undirected	10697	31 992	5.98	1.000	3.31	2.5	0.035	0.39	-0.
	Power grid	Undirected	4941	6594	2.67	1.000	18.99		0.10	0.080	-0.1
	Train routes	Undirected	587	19603	66.79	1.000	2.16	-		0.69	-0.0
	Software packages	Directed	1439	1723	1.20	0.998	2.42	1.6/1.4	0.070	0.082	-0.0
	Software classes	Directed	1376	2 2 1 3	1.61	1.000	5.40		0.033	0.012	-0.
	Electronic circuits	Undirected	24 097	53 248	4.34	1.000	11.05	3.0	0.010	0.030	-0.
	Peer-to-peer network	Undirected	880	1296	1.47	0.805	4.28	2.1	0.012	0.011	-0.3
Biological	Metabolic network	Undirected	765	3 686	9.64	0.996	2.56	2.2	0.090	0.67	-0.:
	Protein interactions	Undirected	2115	2 2 4 0	2.12	0.689	6.80	2.4	0.072	0.071	-0.1
	Marine food web	Directed	134	598	4.46	1.000	2.05	-	0.16	0.23	-0.:
	Freshwater food web	Directed	92	997	10.84	1.000	1.90		0.20	0.087	-0.:
	Neural network	Directed	307	2 3 5 9	7.68	0.967	3.97	-	0.18	0.28	-0.:

Power laws and scale free networks

- Networks that follow power law degree distribution are referred to as scale-free networks
 - A Scale-free network means that the ratio of very connected nodes to the number of nodes in the rest of the network remains constant as the network changes in size (supports research based on some sampling methods): f(ax) = b f(x), ∀ x ∈ DegSeq(G)
- Real networks do not follow power law degree distribution over the whole range of degree k
 - That is the degree distribution is not monotonically decreasing over the whole range of degrees
 - Many times we refer to its tail only (high degrees)
 - Deviations from power law can appear for high values of k as well

Power laws and scale free networks

- Generally it is the degree distribution, and we say that the "network is scale-free" which in reality says "the degree distribution is scale-free"
- Sometimes the exponent of the degree distribution captures this.
 Why? The exponent is the slope of the line that fits the data on log-log scale.
- This has been tested with random subnetworks of scale free models that indeed show scale free degree distribution (but not always the same exponent)

Scale free

- General belief: Scale free networks grow because of preferential attachment
- However:

preferential attachment \rightarrow scale free

But

preferential attachment - scale free (counterexample: the configuration model)

- Newman, "The Structure and Function of Complex Networks" http://epubs.siam.org/doi/pdf/10.1137/S003614450342480
- Source: L. Barabasi. Source: <u>http://barabasi.com/networksciencebook/chapter/5#origins</u>
- Source: Watts, DJ; Strogatz, S H. 1998.
 Collective dynamics of 'small-world' networks, NATURE 393 (668).

