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In class exercise

• A clique of size

݇

: a subset of 

݇�

nodes, with 

every node connected to every other member 

of the subset.

• Identify a:

– 1-clique

– 2-clique

– 3-clique

– 4-clique
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* A clique of size k: a subset of k nodes, with
every node connected to every other member
of the subset.

* Identify a:
— 1-clique
— 2-clique
— 3-clique
— 4-clique
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k-core

• ܣ�݇

-core: maximal subset of nodes, 

ܵ

, with 

���

ீሾௌሿ

ݒ� ൒ ݇

, where 

ܩሾܵሿ

is the subgraph 

induced by S.

• Idea: enough edges are present to make a 

group strong.

• References: 

• [1] Bollobas, B. Graph Theory and Combinatorics: Proceedings of the Cambridge 

Combinatorial Conference in honor of P. Erdos, 35 (Academic, New York, 1984). 

• [2] Seidman, S. B. Network structure and minimum degree. Social Networks 5, 269–287 

(1983). 

• [3] Carmi, S., Havlin, S, Kirkpatrick, S., Shavitt, Y. & Shir, E. A model of Internet topology 

using k-shell decomposition. Proc. Natl. Acad. Sci. USA 104, 11150-11154 (2007). 

• [4] Angeles-Serrano, M. & Bogu˜n

´

a, M. Clustering in complex networks. II. Percolation 

properties. Phys. Rev. E 74, 056116 (2006). 
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e A k-core: maximal subset of nodes, S, with
deggrs) v = k, where G[S] is the subgraph
induced by S.

* Idea: enough edges are present to make a
group strong.

» References:

[1] Bollobas, B. Graph Theory and Combinatorics: Proceedings of the Cambridge
Combinatorial Conference in honor of P. Erdos, 35 (Academic, New York, 1984).

[2] Seidman, S. B. Network structure and minimum degree. Social Networks 5, 269-287
(1983).

[3] Carmi, S., Havlin, S, Kirkpatrick, S., Shavitt, Y. & Shir, E. A model of Internet topology
using k-shell decomposition. Proc. Natl. Acad. Sci. USA 104, 11150-11154(2007).

[4] Angeles-Serrano, M. & Bogu™n”a, M. Clustering in complex networks. II. Percolation
properties. Phys. Rev. E 74, 056116 (2006).
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k-core

A 

݇

-core of size n: maximal subset of nodes 

݇

with 

���

ீሾௌሿ

ݒ� ൒ ݇

, where 

ܩሾܵሿ

is the subgraph 

induced by 

ܵ

.

Finding the core: 

eliminate lower-order

k-cores until to find 

The highest k before 

the network vanishes.
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A -core of size n: maximal subset of nodes  with , where  is the subgraph induced by .



Finding the core: 
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A k-core of size n: maximal subset of nodes k
with degg sy v = k, where G[S] is the subgraph
induced by S.

Finding the core:
eliminate lower-order
k-cores until to find

The highest k before

the network vanishes.
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• A 

݇

-core of size n: maximal subset of nodes 

݇

with 

���

ீሾௌሿ

ݒ� ൒ ݇

, where 

ܩሾܵሿ

is the 

subgraph induced by 

ܵ

.

• Identify a:

– 1-core

– 2-core

– 3-core

– 4-core
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A -core of size n: maximal subset of nodes  with , where  is the subgraph induced by .

 

Identify a:

1-core

2-core
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* A k-core of size n: maximal subset of nodes k
with degg sy v = k, where G[S] is the
subgraph induced by S.

* Identify a:
— 1-core
— 2-core
— 3-core

— 4-core
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k-dense

• A k- dense sub-graph is a group of vertices, in 

which each pair of vertices {i, j} has at least 

݇

-2 common neighbors.

Idea:  pairwise friends 

(

݇�

–dense looks at edges rather 

than vertices in making them part of the 

݇�

group)
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A k- dense sub-graph is a group of vertices, in which each pair of vertices {i, j} has at least 
-2 common neighbors.









Idea:  pairwise friends (–dense looks at edges rather than vertices in making them part of the group)
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» A k- dense sub-graph is a group of vertices, in
which each pair of vertices {i, j} has at least
k-2 common neighbors.

Idea: pairwise friends (k —dense looks at edges rather
than vertices in making them part of the k group)
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k-dense

• A k- dense sub-graph is a group of vertices, in 

which each pair of vertices has at least 

݇

-2 

common neighbors.

• k - clique 

ؿ

k - dense 

ؿ

k – core
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k-dense

A k- dense sub-graph is a group of vertices, in which each pair of vertices has at least -2 common neighbors.







 k - clique  k - dense   k – core
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* A k- dense sub-graph is a group of vertices, in
which each pair of vertices has at least k-2
common neighbors.

* k-clique C k - dense € k — core
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In class exercise

• A k- dense sub-graph is a group of vertices, in 

which each pair of vertices {i, j} has at least 

k-2 common neighbors.

• Identify a:

– 1-dense

– 2-dense

– 3-dense

– 4-dense
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In class exercise

A k- dense sub-graph is a group of vertices, in which each pair of vertices {i, j} has at least 
k-2 common neighbors.

Identify a:

1-dense

2-dense

3-dense

4-dense
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Components

• Recall that a graph is k-connected/k-component if it 

can be disconnected by removal of k vertices, and no 

k-1 vertices can disconnect it.

• Component is a maximal size connected subgraph

• A k-component (k-connected component) is a  

connected maximal subgraph that can be 

disconnected (or we’re left with a 

ܭ

ଵ

) by removal of 

k vertices, and no k-1 vertices can disconnect it.

• Alternatively: A k-component is a connected 

maximal subgraph such that there are k-vertex-

independent paths between any two vertices

1
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Components

Recall that a graph is k-connected/k-component if it can be disconnected by removal of k vertices, and no k-1 vertices can disconnect it.

Component is a maximal size connected subgraph

A k-component (k-connected component) is a  connected maximal subgraph that can be disconnected (or we’re left with a ) by removal of k vertices, and no k-1 vertices can disconnect it.

Alternatively: A k-component is a connected maximal subgraph such that there are k-vertex-independent paths between any two vertices
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Recall that a graph is k-connected/k-component if it
can be disconnected by removal of k vertices, and no
k-1 vertices can disconnect it.

Component is a maximal size connected subgraph

A k-component (k-connected component) is a
connected maximal subgraph that can be
disconnected (or we’re left with a K;) by removal of
k vertices, and no k-1 vertices can disconnect it.

Alternatively: A k-component is a connected
maximal subgraph such that there are k-vertex-
independent paths between any two vertices
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In class exercise

• The k-component tells how robust a graph or 

subgraph is.

• Identify a 

subgraph

that is either a:

– 1-connected

– 2-connected

– 3-connected

– 4-connected

2


Microsoft_PowerPoint_Slide1.sldx
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The k-component tells how robust a graph or subgraph is.

Identify a 
subgraph
that is either a:

1-connected

2-connected

3-connected

4-connected
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k-cliques

• A clique of size 

݇

: a subset of 

݇

nodes, with every node 

adjacent to every other member of the subset (all 

݇ െ ͳ

one of them)

• We usually search for the maximum clique

• Hard to find (decision problem for the clique number is 

NP-Complete)

• Why is it hard to use this concept on real networks?  

– Because one might not infer/know all the edges of the true 

network, so clique may exist but it may not be captured in the 

data to be analyzed 

– A relaxed version of a clique might be just as useful in large 

networks.

3
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k-cliques

A clique of size : a subset of  nodes, with every node adjacent to every other member of the subset (all  one of them)

We usually search for the maximum clique

Hard to find (decision problem for the clique number is NP-Complete)

Why is it hard to use this concept on real networks?  

Because one might not infer/know all the edges of the true network, so clique may exist but it may not be captured in the data to be analyzed 

A relaxed version of a clique might be just as useful in large networks.
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A clique of size k: a subset of k nodes, with every node
adjacent to every other member of the subset (all k — 1
one of them)

We usually search for the maximum clique

Hard to find (decision problem for the clique number is
NP-Complete)

Why is it hard to use this concept on real networks?

— Because one might not infer/know all the edges of the true
network, so clique may exist but it may not be captured in the
data to be analyzed

— A relaxed version of a clique might be just as useful in large
networks.
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