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Quantitative modeling of the behaviour of microfluidic autoregulatory devices
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We develop a theoretical model for a fluidic current source consisting of a via, a detour channel, and

a push-up type micro-valve. The model accurately describes the non-linear behaviour of this type of

device, which has been previously measured experimentally. We show how various structural

parameters and material properties of the device influence the saturated flow rate and the minimum

driving pressure required for the device to function as a current source. Conversely, the model can be

used to design a fluidic current source with a desired saturated flow rate and low operational pressure.

The present model can be straightforwardly applied to microfluidic circuits composed of many

functional autoregulatory devices.
Introduction

A multilayer soft lithography technique1 has enabled a dense

integration of micro-valves and pumps within a microfluidic

circuit for various applications.2–4 In general, these device

elements consist of shallow microfluidic channels and are char-

acterized by laminar flows due to the low Reynolds number

(Re).5,6 As a result, incompressible Newtonian fluid flow in an

axially uniform microfluidic channel can be described by the

well-known Poiseuille’s law, which states that the flow rate (Q) is

proportional to the applied pressure (P) while inversely

proportional to the hydraulic resistance (R) of the flow channel.

However, a microfluidic device showing a nonlinear relation-

ship between Q and P is in increasing demand in applications,7–9

where, for instance, maintaining a constant Q for a wide range of

P will be useful.10–12 For example, in a drug delivery system,

a constant flow rate is critical,13 so pressure fluctuations can be

negated with an in-built current source. Yet in reality, obtaining

the desired nonlinear behaviour has been a challenge and few

studies have been successful. Groisman and co-workers have

demonstrated fluidic current source operation by employing

a complex winding microfluidic channel along with highly

viscous polymer solution as a working fluid.10However, practical

bio-medical applications need such nonlinear fluidic behaviour

to be achieved with water-based biocompatible solutions, which

are Newtonian fluids.

Fortunately, autoregulatory devices11,12,14 offer an elegant

and innovative solution to this problem. These devices
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automatically regulate flow with a combination of a detour

channel and a three-dimensional fluidic junction, referred as

‘via’.12,14 Furthermore, the flow behaviour itself is very inter-

esting from the perspective of basic physics, due to multiple

features and effects: autoregulatory nonlinear behaviour with

Poiseuille flow, saturation,12 and negative resistance (the

‘‘dip’’).14

These devices are also interesting from the perspective of

microfluidic engineering as they offer unique capabilities, thereby

expanding the toolbox available for microfluidic applications. In

particular, point-of-care biomedical diagnostics requires a chal-

lenging combination of low cost, flexibility, multiplexing, and

portability, while complex function traditionally comes at the

expense of complex external control.15–18 Herein lies the promise

of autoregulatory devices, as they offer complex behaviour and

function at minimal or no external control, thereby leading to

smaller overall size of the diagnostic system.

In this paper, we take another step towards the widespread

utilization of autoregulatory devices by providing a theoretical

model for their behaviour, which has been confirmed by previous

experimental data.12 This model can be used to predict the flow

behaviour as a function of the Young’s modulus of the material

and of the device’s architectural parameters such as length,

height, and width of a microfluidic channel.

Specifically, we consider several aspects to reflect on the final

modeling. First, we account for the PDMS microchannel

swelling with an applied pressure,19,20 by incorporating Ger-

vais’s formula21 in our calculations. Second, we show that our

experimentally confirmed theoretical model23 for push-down

valves can be used for push-up22 valves as well. Third, we

demonstrate that the nonlinear response can be successfully

modeled through a combination of Poiseuille’s law and the

above two aspects. Finally, we show that the resulting model is

in good agreement with our experimental data on the current

source.
This journal is ª The Royal Society of Chemistry 2012
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Description of a PDMS autoregulatory device

In Fig. 1, we show a schematic diagram of the fluidic current

source, which is used for experimental measurements on pres-

sure-driven flow presented in the previous literature.12 We

develop an analytical model based on these data. A long straight

main channel and a detour channel bypassing from the main

channel to the micro-valve region are designed. This detour

channel is one of the two important integral parts in the current

source device; the other important part is a via, which chooses

either push-up or push-down configuration for the valve design.

The valve membrane thickness, shown in Fig. 1b, is assumed to

be 5 mm, which is estimated from the known spin-coating

formula.24 Other structural parameters are dealt with in great

detail in our earlier publication.12

The PDMS microfluidic device was made of Sylgard 184. The

mixing ratio between the base and the curing agent of the Sylgard

as well as the curing time and the temperature can control the

stiffness of the resulting PDMS, hence the Young’s modulus of

the PDMS.25 The rigidity of the material determines valve action

and the channel deformation21 by an internal pressure; therefore

our final model should include the effect of the Young’s modulus.

Further detailed experimental procedures regarding the
Fig. 1 Microfluidic current source device. (a) The device consists of two

PDMS microfluidic layers. The upper one has the main flow channel and

the detour channel, while the lower one has the control channel. Both

channels are connected through via. (b) Cross-section view of the push-

up valve. The valve has the flat membrane geometry whose thickness h is

determined by the spin speed. The boundary of the flow channel is round

in shape, while the control channel is in rectangular shape. (c and d)

Photographs of the scale of the fabricated current source and via (cour-

tesy of Proc. Natl. Acad. Sci. U. S. A., ref. 12, copyrightª by the National

Academy of Sciences).

This journal is ª The Royal Society of Chemistry 2012
fabrication and the measurement can be found from our earlier

literature.12

Fig. 1d shows an optical microscope image of the ‘via’, con-

necting channels on two different levels – the control channel in

the lower layer and the flow channel in the upper layer. This via

enables propagation of the static pressure at the entrance of the

detour channel to the dead-end point, where the micro-valve

actuates to control the flow in the main channel. Note that the

net upward pressure held across the valve membrane (blue region

in Fig. 1b) is equal to the pressure drop in the main channel

between the detour entrance and the value region (DP2).
Model for push-up valve

The current source device regulates the flow rate passing through

the main channel by means of the push-up valve. Studer and co-

workers have performed the three-dimensional finite-element

method (FEM) to understand both push-up and push-down

valves.22 The numerical simulation has revealed that the required

pressure needed to completely close the channel is 10 times

smaller in the case of a push-up valve than a push-down valve

with structural dimensions identical to the push-up valve. On the

other hand, an experimentally confirmed model has been devel-

oped for the push-down case by combining three simpler linear

models, a thick beam, a thin spring, and a thick spring model.23

Here, we extend the regime of the validity to include the push-up

case by introducing a scaling factor k, which we refer to as

a membrane geometry factor. Then, we can write the required

‘net’ closing pressure measured across the valve membrane as23

Dpup(H0) ¼ k $ E ln[1 + (16 H2
0/3)(w

�2
v + l�2

v )

+ 4H0(h
3 + 16H2

0h/3 � 16H3
0/5)(w

�4
v + l�4

v )] (1)

where E is Young’s modulus of the material (ratio of stress to

strain), H0 is the height of the flow channel to be completely

closed and wv, lv, and h are structural parameters for the geom-

etry of the micro-valve – width, length, and membrane thickness.

Though we will try to extract a proper k value through fitting

processes with experimental data, we would like to note that k of

0.1 gives the best fit, which is consistent with the previous FEM

simulation result.
Theoretical model

Effective channel model

Before developing a model for the realistic autoregulatory device

shown in Fig. 1d, we will begin with a rather simple situation as

depicted in Fig. 2a. A straight flow channel with length of L (¼L1

+ D + L2) has a small bulge or a dimple with length of D

(assumed to be much smaller than L1 or L2). Then, we define the

deformation ratio as g ¼ Hv/H0, where H0 and Hv are the

original and the deformed channel height, respectively. It should

be noted that the presence of dimple (bulge) depicts a situation

where a fluid flows in the forward (reverse) direction (see Fig. 3).

In this section, we will present the concept of the effective

channel height, which will be useful to model a flow channel with

varying height. As is well known, various useful concepts in the

electrical circuit design can be adopted to the case of micro-

fluidics. For example, in the electrical circuit system, the concept
Lab Chip, 2012, 12, 1890–1896 | 1891
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Fig. 2 Effective channel height. (a) Three different channel segments are

connected in series: channel 1 (2, 3) has length L1 (D, L2) and height H0

(Hv, H0). The multiple channels can be regarded as a straight channel

with a length L (¼ L1 + D + L2) and an effective channel height He. The

length D and height Hv of the middle channel are expressed as 3L and

gH0, where 3 and g are the proportional constants. (b) WhenH0, L, and 3

are given by 20 mm, 14.2 mm, and 0.01, respectively, the deformable ratio

g has a strong effect on the effective channel height. For g > 1 or g3 > 3,

the effective channel height can be approximated asH0 (blue box). While,

for g3 < 3, the effective channel is lower than H0 below g of �0.4 (red

box).

Fig. 3 Top view of the current source architecture. The channel in grey

(red) indicates the flow (control) channel in the upper (lower) layer. The

flow channel is connected to the control channel by via (green box). The

black arrows indicate flow directions. The forward (reverse) bias allows

a positive (negative) pressure drop across the detour channel to actuate

the push-up valve.
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of effective resistance (Reff) has been proved to be very useful

when interpreting a composite of resistors. One can always find

a certain Reff for any given network of resistors. Then, the overall

behaviour of the electrical current is simply given by I ¼ V/Reff.

On the other hand, in microfluidics, the hydraulic resistance R

connects between Q and P through the Poiseuille’s law. Then, we

can make correspondence between {Q and P} and {current (I)

and voltage (V)}, respectively.

Borrowing the concept of effective resistance in electrical

circuit analysis, we can define an effective height He such that

hydraulic resistance of a uniform channel with He will result in
1892 | Lab Chip, 2012, 12, 1890–1896
the sameQ for a given P. To deriveHe, we have used the fact that

(1) Q is conserved throughout the entire channel and (2) the

Poiseuille’s law holds within a uniform section of the channel. In

Fig. 2b, we plot effective He as a function of g, where we have

fixed D at a constant 0.01� L. For example, in the case of g > 1.0

(bulging), we find thatHe hardly changes. However, in the case of

g < 1.0 (dimple), He abruptly decreases when g goes below 0.4.

This result shows that the fluidic ‘bottleneck’ is a critical element

to govern the overall flow dynamics though it only spans over

a very small portion (1%) of the channel. This behaviour in the

effective channel height captures the essential aspect of our

autoregulatory system and shows how a constant flow rate can

be generated. It should be noted that channel heights in the

actual device are not such a simple two stepwise but a continu-

ously varying function of space in the form ofH(x). Even in such

a general situation, we can always define an effective channel

height, from which we can define an effective hydraulic

resistance.
Poiseuille’s law for a rectangular cross-sectional channel

A cross-sectional geometry of a microfluidic channel determines

the hydraulic resistance26 (R). For instance, in the case of

a cylindrical cross-section, R is inversely proportional to the

fourth power of its radius. In the case of a rectangular cross-

section with a height H0 and width W (W [ H0), R is inversely

proportional to the third power of H0 and the first power of W.

When an actual geometry is slightly deformed from these ideal

simple geometries, we can introduce a geometrical correction

factor27 a. The actual geometry of our microfluidic channel is not

either a perfect circle or a rectangle but a wedge-like shape with

a half-elliptical upper contour and a flat bottom.1 However, it

turns out that taking a to be 1 is legitimate when the aspect ratio

H0/W is very small. Then, we can write R as

R ¼ 12hL

H3
0W

; (2)

therefore the Poiseuille’s law is given by:28

Q ¼ H3
0W

12hL
P: (3)

Here, H0 and W are the height and width of a microfluidic

channel. P denotes a pressure drop across the main flow channel

with a length of L as shown in Fig. 1a and 3, that is, P¼ P(x¼ 0)

� P(x ¼ L). h is a dynamic viscosity of a working fluid.
Model for a non-deformable PDMS channel

In this section, we develop a model for a non-deformable PDMS

channel. Fig. 3 shows a two-dimensional layout of the main flow

channel, the detour channel, the via, and the valve. We concep-

tually divide the main channel into four different sections with

channel lengths of L1, L2, L3, and L4. We note that flow rates in

all sections must be identical (conservation of mass). The total

pressure drop across the entire system (from O to S) will be given

by the sum of partial pressures in their respective sections such

that
This journal is ª The Royal Society of Chemistry 2012
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Fig. 4 Characteristics of the current source. (a) The Q–P curve shows

the nonlinear behaviour. The flow rate remains constant beyond the

saturation pressure. The slope at the initial condition is inversely

proportional to the hydraulic resistance from Poiseuille’s law. (b) The

saturation pressure is defined as a point where the slope of dQ/dP(P) is

zero. (c) The partial flow channel height Hv is deformed by the pressure-

actuated push-up valve. The Hv(P) curve has the saturation pressure,

resulting in the nonlinear hydraulic resistance.
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P ¼ DP1 þ DP2 þ DP3 þ DP4

¼ 12hðL1 þ L2Þ
H3

0W
Qþ 12hL3

H3
vW

Qþ 12hL4

H3
0W

Q: (4)

Note that the above expression for P now includes two

unknowns, Q and Hv. Therefore, we need to construct one more

equation to solve P as a function of Q.

If we apply eqn (3) to the detour channel since Q remains

constant along the channel, we obtain

Q ¼ H3
0W

12hL2

DP2: (5)

Here, DP2 is the pressure drop across L2, which is also equal to

the net pressure held across the valve membrane. From eqn (1),

we know how much net pressure is required to completely close

the flow channel with the height H0. In general, however, DP2 is

less than Dpup(H0) and the channel height Hv lies between 0 and

H0. Let us find out an expression for DP2 in terms of Dpup(H).

One plausible candidate is

DP2 ¼ Dpup(H0) � Dpup(Hv). (6)

The above equation indeed satisfies boundary conditions at

the two extreme conditions: If the net pressure is vanishingly

small (DP2 ¼ 0), then we obtain a trivial solution of Hv ¼ H0. If

the channel is nearly completely closed (Hv z 0), then the

required net pressure to maintain this configuration must be

equal toDpup(H0). With this assumption, we can eliminate DP2 in

eqn (5) such that

Q ¼ H3
0W

12hL2

�
DpupðH0Þ � DpupðHvÞ

�
: (7)

Now we have two unknowns, Q and Hv, and two equations,

eqn (4) and (7). Therefore, we can obtain the P(Q) curve or Q(P)

curve by numerically solving them; first, one obtains Q as

a function of Hv using eqn (7). Then, the right hand side of eqn

(4) can be rewritten as a function of Hv, which means P(Hv) is

obtained. By comparing Q(Hv) and P(Hv), one can plot either

P(Q) or Q(P) and this completes our problem.

Fig. 4a shows the flow rate (Q) as a function of applied pres-

sure P, which clearly shows nonlinear behaviour after a certain

threshold value of P. At above this value, Q does not show

noticeable change for a large variation in P, which is the required

property to function as a fluidic current source. Mathematically,

the saturation point is defined as the point at which the slope of

the Q(P) curve becomes zero (Fig. 4b). In fact, after a certain

threshold value of P, dQ/dP is already very small but approaches

true zero very slowly. This behaviour can also be seen from the

evolution of Hv as shown in Fig. 4c; Hv seems to saturate at

a certain non-zero value but Hv will go down to zero in the limit

of large P (Q(P) will go to zero at complete closing of the flow

channel. However, in practice, we will see the breakdown of

microfluidic channels before reaching this high pressure limit.).
Saturated flow rate and pressure required to reach the saturation

When designing a fluidic current source, there are two important

considerations: (1) the pressure needed to reach the saturation

point should be minimized and (2) we should be able to control
This journal is ª The Royal Society of Chemistry 2012
a constant flow rate at the saturation. We will answer these by

directly solving eqn (4) and (7), where we assume a perfectly rigid

channel that does not suffer from the channel deformation. We

also simplify the expression for the needed pressure for complete

closing of the valve (eqn (1)) by assuming h [ wv, lv such that

Dpup(Hv) z k $ E ln[1 + (16H2
v/3)(w

�2
v + l�2

v )] (8)

Using the above simplification, we can write Dpup(H0) �
Dpup(Hv) at the saturation (Hv � H0) as

DpupðH0Þ � DpupðHvÞ /
Hv�H0

k$E ln
�
1þ �

16H2
0=3

��
w�2

v þ l�2
v

��
(9)

We plug eqn (9) into (7) to obtain the expression for the

saturated flow rate in terms of structural parameters.

Qsatz
H3

0W

12hL2

kE ln
�
1þ �

16H2
0=3

��
w�2

v þ l�2
v

��
: (10)

On the other hand, the initial slope in the Q(P) curve is given

by

dQ

dP

����
P¼0

¼ H3
0W

12hL
: (11)

Note that Hv decreases with a rather steep slope from the

beginning as shown in Fig. 4c. However, the effective channel

heightHe (Fig. 2b) decreases very slowly because the valve region
Lab Chip, 2012, 12, 1890–1896 | 1893
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Fig. 5 Response of the Q–P curve. The flow rate increases in the linear

fashion in the rigid channel and its slope is inversely proportional to the

hydraulic resistance, which is independent of the applied pressure (dashed

line). On the other hand, the resistance in the deformable PDMS channel

is varied as the applied pressure is increased, leading to the upward

curvature of the Q–P curve at a high pressure (solid line).
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occupies only a small portion of the entire flow channel. This is

the reason why the initial slope of theQ(P) curve does not change

too much up to the saturation point. For ideal current source

operation, it is important to maximize the initial slope so as to

minimize the operational pressure. From eqn (11), we can see

that the channel heightH0 seems to be the dominant factor, since

the slope depends on the cube of H0. The same cube dependence

can be found from Qsat (eqn (10)). This observation raises
Fig. 6 Simulation of theQ(P) curve for various values of (a) initial height of t

degree of PDMS deformation c. Tuning parameters assumed here are relevan

1894 | Lab Chip, 2012, 12, 1890–1896
a concern whether or not we can control Qsat and the dQ/dP

independently, which will be discussed in the Results section.
Model for a deformable PDMS channel

Now we consider the effect of the PDMS deformation due to the

internal pressure by the flowing fluid itself. We will use the result

developed for a straight PDMS channel in the previous litera-

ture.21 The displacement from the original channel height will be

described by a perturbation factor L, which is defined as

LðxÞ ¼ c
PðxÞW
EH0

(12)

and

H(x) ¼ H0 (1 + L(x)) (13)

where c is an unknown proportionality constant and P(x)

denotes the internal pressure along the axis of the main flow

channel. It should be noted that we will neglect this channel

expansion in the transverse direction so thatW(x) ¼W, which is

legitimate since W/H0 [ 1. Now we can apply this perturbative

approach to find corrections to the unperturbed flow rate in the

absence of the channel deformation (the dotted line in Fig. 5). We

can solve the reduced Navier–Stokes equation20,21,26,29 for the

above situation to obtain a new velocity profile. The proper

surface integration of the velocity profile over the cross-section of

the channel gives the corrected flow rate Q, which now includes c

and E, properties of the PDMS used.20,21
he flow channelH0, (b) Young’s modulus E, (c) detour ratio L2/L, and (d)

t to actual fabricated devices.12,14,21,25

This journal is ª The Royal Society of Chemistry 2012
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Q ¼ H4
0E

48chL

��
1þ cW

EH0

P

	4

�1



(14)

In Fig. 5, we plot the result of eqn (14) along with the rigid

Poiseuille’s straight channel having the identical dimensions. At

our typical working pressure of around 20 psi, errors between the

two models can be as high as 20%, which justifies the need for

such correction. Thus, eqn (4) has to be changed to

P ¼EH0

cW

��
1þ 48chðL1 þ L2Þ

H4
0E

Q

	1=4

�1




þ 12hL3

H3
vW

Qþ EH0

cW

��
1þ 48chL4

H4
0E

Q

	1=4

�1



;

(15)

where the applied pressure P is expressed as a function ofHv. We

neglect this bulging effect for the valve region, since L3 is just

about 0.7% of the total length (¼ L1 + L2 + L3 + L4).

Following similar steps in eqn (5)–(7), we obtain the expression

for the flow rate Q as a function of Hv.

Q ¼ H4
0E

48chL2

��
1þ cW

EH0

�
DpupðH0Þ � DpupðHvÞ

��4

�1



: (16)

Therefore, comparing P(Hv) [eqn (15)] and Q(Hv) [eqn (16)], one

can plot Q as a function of P.
Fig. 7 Comparison of measurement and modeling data in reverse bias.

Flow rates are measured as a function of applied pressure given at

different detour channel ratios L2/L (black squares, blue triangles, green

stars, blue diamonds and red filled circles). The fit of eqn (14) clearly

shows a slightly upward slope (red solid line). The fit parameter E/c of

4.14 MPa is good agreement with measured data.

Fig. 8 Comparison of measurement and modeling data in forward bias.

From eqn (14) and (15), the nonlinear fit curves (solid lines) are in good

agreement with measured data (black squares, blue triangles, green stars,

blue diamonds and red filled circles) where fit parameters c and E are 0.29

and 1.2MPa, respectively. The saturation pressure and flow rate decrease

as the detour channel ratio increases.
Results

In Fig. 6, we plot various Q(P) curves as we vary various

parameters. First let us look at results in Fig. 6a. We vary H0

while fixing other parameters. As expected, as dQ/dP increases

Qsat increases accordingly. To get a rather independent control of

Qsat over dQ/dP, we note that the expression for Qsat [eqn (10)]

contains additional parameters, E and L2, which are not included

in dQ/dP [eqn (11)]. The evolution of Qsat as a function of E and

L2 is presented in Fig. 6b and c, respectively. Within a reasonable

range in E for PDMS, we can control Qsat in the range of 100 nL

s�1 to 400 nL s�1. However, E is a quantity fixed during the

fabrication step. Therefore, to allow variations in Qsat within the

same PDMSmicrofluidic chip, we must control L2. Fig. 6c shows

this result: Qsat is inversely proportional to L2. This result shows

that the detour channel is an essential part of our autoregulatory

system. Finally, we also investigate the effect of PDMS bulging

shown in Fig. 5. We vary a constant that controls the degree of

the bulging; as expected, only a small variation in Qsat could be

obtained.

Now we are in a good position to apply our findings to the

experimental data. As noted in the above, the slope is a very

sensitive function of H0. Therefore, we first try to obtain the

most reasonable value for H0 while W, L, and h are fixed to

some known values. In fact, when we apply pressure to the port

S (reverse bias), the effect of the valve region can be neglected

as proven by the effective channel height argument. As we

decrease L2 (or the detour ratio L2/L), this assumption holds

true more and more perfectly. Fig. 7 compares experimental

data from our previous work12 (dots) and a theoretical curve

(solid line). Here, we try to fit the curve to the measurement

data with L2/L ¼ 0.23. We find that the best fitted curve can be

obtained with E/c ¼ 4.14 MPa.
This journal is ª The Royal Society of Chemistry 2012
Then, we try to fit data obtained from the forward bias

experiments (see Fig. 8). In this fitting, E and c are fitting

parameters with a constraint of E/c¼ 4.14MPa. This means only

one fitting parameter is used to get good fitted results as shown in

Fig. 8. The best fitted results are obtained with E ¼ 1.2 MPa and

c ¼ 0.29, both are within reasonable ranges.
Discussion and conclusions

We develop a theoretical model that can explain how the flow

rate changes as we regulate the flow by employing the detour

channel. The theoretical model predicts on how the flow rate

changes as a function of applied pressure – theQ(P) curve, which
Lab Chip, 2012, 12, 1890–1896 | 1895
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shows good agreement with the experimental data, though the

model is based on a rather simple Poiseuille’s law for incom-

pressible, Newtonian fluids. Specifically, we verify that modeling

parameters such as (1) flow channel height H0, (2) Young’s

modulus of PDMS E, (3) detour channel ratio L2/L, and (4)

membrane geometry factor k have strong influence on the satu-

ration pressure and the saturated flow rate. We also consider the

expansion of microfluidic channel height, originated from the

softness of PDMS, which would be of more significant concern at

a higher pressure.

The autoregulatory effect depends on the ratio of lengths of

the ‘‘main channel’’ and ‘‘detour channel’’, rather than the

lengths themselves.12,14 Therefore, the size of such a current

source unit is not limited by the length of the constituent chan-

nels. However, the device operation is dependent on the proper

functioning of the valve, which has geometric limitations14 and

thus limits the size of the unit to �0.25 mm2 by current tech-

nology. Still, such size allows device densities of over 2500 per

inch2, which is very generous for most conceivable applications.

The theoretical model presented here is a building block for the

theory of such circuits, just as a single current source is a building

block for their physical structure.

Microfluidic devices based on biocompatible fluids will be

likely to be useful for a broad range of applications from basic

biochemical studies on-a-chip to biomedical fields. Furthermore,

it has been argued that further miniaturization of the micro-

fluidic chip size has been hampered by a number of external ports

(also known as Medusa) which are indispensable for controlled

actuation of micro-valves.29 The via structure that connects the

detour flow channel to the push-up valve allows three-dimen-

sional systematic integration of microfluidic circuit elements,

which would help to increase the number density of fluidic

components and to enable ultimate device miniaturization.

Therefore, we can expect huge reduction in the number of

external ports by employing our autoregulatory systems based

on these vias. In this context, our modeling will provide useful

guidelines to the design of such devices as well as to understand

physics behind their behaviour and operation.
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