
1

Behavioral Models for Systems

Architecture and Workflow Analysis

Mikhail Auguston, Kristin Giammarco
Computer Science Department, Systems Engineering Department

Naval Postgraduate School
Monterey, California, USA

2

“Every system has an architecture,
whether or not it is documented and

understood.”

ROZANSKI, N., WOODS, E., 2012,
 Software Systems Architecture, 2nd Edition, Addison-Wesley

3

•  A system architecture description belongs to a high level
of abstraction, ignoring many of the implementation
details, such as algorithms and data structures

•  The architecture plays a role as the bridge between

requirements and implementation of a system

•  Errors in early system design are the most expensive to fix
when detected later in the development lifecycle

•  Modeling is an approach to the design and verification of
system architecture

Technical Rationale

4

•  One of the major concerns in architecture design is the
question of the behavior of the system

•  An architecture specification should be supportive for
the refinement process

•  Composition operations focus on the interactions
between the parts of the system

•  An architecture of a system is considered in the context
of the environment in which it operates, including
business processes

•  The architect needs a number of different views of the
architecture for the various uses and users

Technical Rationale

5

What is Monterey Phoenix?

MP is a framework for software system architecture and related
workflow modeling with the focus on behavior of software
system and its environment

Behavior is defined as a set of events (event trace) with two basic
relations: precedence and inclusion
•  The MP trace generator produces all possible scenarios of

system behavior up to a scope limit.
•  MP model separates component behaviors and component

interactions.

http://wiki.nps.edu/display/MP

6

The Innovations
•  An executable system architecture model - Monterey

Phoenix scenario generator can produce event traces with
several hundred or small thousands of events

•  An event trace visualization framework that enables
human analysts to focus on the behavior of the system and
provides multiple views for different stakeholders

•  Mechanisms to run queries on the automatically generated
event traces, and a language for event trace analysis
(assertion checking)

7

The main MP innovations in BPM

•  Traditional business process modeling frameworks
(BPEL, BPMN, UML, IDEF) are constrained by the
“single flowchart” paradigm

•  MP separates component behaviors from the

component interaction, and thus provides a
multidimensional picture of concurrent behaviors,
with overlapping threads of process phases and
participating actors

8

Basic concepts for behavior modeling

Event - any detectable action in system’s or environment’s
behavior

Event trace - set of events with two basic partial ordering

relations, precedence (PRECEDES) and inclusion (IN)

Event grammar - specifies the structure of possible event

traces

9

A simple pipe/filter architecture pattern

SCHEMA simple_message_flow
ROOT Task_A: (* send *);
ROOT Task_B: (* receive *);
COORDINATE $x: send FROM Task_A,

 $y: receive FROM Task_B
 DO ADD $x PRECEDES $y; OD;

a)  Example of a composed event trace

b) An architecture view for the schema

10

Data items as behaviors
Data items are represented by actions that may be performed on that data

SCHEMA Data_flow
ROOT Process_1: (* work write *);
ROOT Process_2: (* (read | work) *);
ROOT File: (+ write +) (* read *);
Process_1, File SHARE ALL write;
Process_2, File SHARE ALL read;

a)  Example of a composed
event trace

b) An architecture view

11

Architecture Verification & Validation

Advantages of Monterey Phoenix approach compared with
the common simulation tools are as follows:

•  Means to write assertions about the system behavior and tools to
verify those assertions.

•  Exhaustive search through all possible scenarios (up to the scope
limit).
o  The Small Scope Hypothesis: most flaws in models could be

demonstrated on small counterexamples
•  Integration of the architecture models with environment models for

verifying system’s behavior on typical scenarios (Use Cases).
•  Event attributes, like timing, can be used for non-functional

requirements (like performance estimates) V/V and queries (like
critical path estimates in PERT diagrams).

•  Assigning probabilities to certain events makes it possible to obtain
statistical estimates for system behaviors.

12

Architecture verification & validation

•  It is much easier for different stakeholders to understand
and verify stand-alone scenarios (Use Cases) neither the
complete formal description of the system

•  Scenario inspection in MP can be automated by assertion
checking tools

•  Interactions of subsystems and environment can be used
for detecting emerging behaviors of System of Systems

•  Different views can be automatically extracted and
visualized for different stakeholder needs

13

Model verification within limited scope

Testing:
A few cases of arbitrary size

Scope-complete:
All cases within a small
bound

14

Implementation

On-line MP editor/trace generator and a set of pre-loaded
examples are available at

http://firebird.nps.edu

MP wiki with Crash Course and reading materials (publicly
available part):
https://wiki.nps.edu/display/MP/Monterey+Phoenix+Home

MP model checking tool was implemented at the National
University of Singapore by Dr. Jin Song Dong’s team

15

Backup slides

16

Event grammar

The rule A:: B C; specifies the event trace A:: (* B *); means an ordered sequence of zero or

 more events of the type B.

IN

PRECEDES

A

B C

A

B
B

B

A:: (B | C); denotes alternative A:: { B, C }; denotes a set of events B
 and C without an ordering relation between
 them

C

A A

B or

C

A

B

17

Integrating environment’s behavior
SCHEMA ATM_withdrawal
ROOT Customer: (* insert_card

 ((identification_succeeds request_withdrawal (get_money | not_sufficient_funds)) |
 identification_fails) *);

ROOT ATM_system: (* read_card validate_id
 (id_successful check_balance
 ((sufficient_balance dispense_money) |
 unsufficient_balance) |
 id_failed) *);

ROOT Data_Base: (* (validate_id | check_balance) *);

Data_Base, ATM_system SHARE ALL validate_id, check_balance ;

COORDINATE $x: insert_card FROM Customer,

 $y: read_card FROM ATM_system DO ADD $x PRECEDES $y; OD;
COORDINATE $x: request_withdrawal FROM Customer,

 $y: check_balance FROM ATM_system DO ADD $x PRECEDES $y; OD;
COORDINATE $x: identification_succeeds FROM Customer,
 $y: id_successful FROM ATM_system DO ADD $y PRECEDES $x; OD;
COORDINATE $x: get_money FROM Customer,

 $y: dispense_money FROM ATM_system DO ADD $y PRECEDES $x; OD;
COORDINATE $x: not_sufficient_funds FROM Customer,

 $y: unsufficient_balance FROM ATM_system DO ADD $y PRECEDES $x; OD;
COORDINATE $x: identification_fails FROM Customer,

 $y: id_failed FROM ATM_system DO ADD $y PRECEDES $x;OD;

18

Architecture view on the component behavior

A view on the Customer
root event behavior as
UML Activity Diagram

19

a) An example of event trace (Use Case) for the ATM_withdrawal schema
b) An architecture view for the ATM_withdrawal schema

