Behavioral Models for Systems
Architecture and Worktlow Analysis

Mikhail Auguston, Kristin Giammarco

Computer Science Department, Systems Engineering Department
Naval Postgraduate School
Monterey, California, USA

“Every system has an architecture,
whether or not it iIs documented and
understood.”

ROZANSKI, N., WOODS, E., 2012,
Software Systems Architecture, 2nd Edition, Addison-Wesley

Technical Rationale

A system architecture description belongs to a high level
of abstraction, ignoring many of the implementation
details, such as algorithms and data structures

The architecture plays a role as the bridge between
requirements and implementation of a system

Errors 1n early system design are the most expensive to fix
when detected later in the development lifecycle

Modeling 1s an approach to the design and verification of
system architecture

Technical Rationale

One of the major concerns 1n architecture design 1s the
question of the behavior of the system

An architecture specification should be supportive for
the refinement process

Composition operations focus on the interactions
between the parts of the system

An architecture of a system 1s considered in the context
of the environment in which it operates, including
business processes

The architect needs a number of different views of the
architecture for the various uses and users

What 1s Monterey Phoenix?

http://wiki.nps.edu/display/MP

MP 1s a framework for software system architecture and related
workflow modeling with the focus on behavior of software
system and its environment

Behavior 1s defined as a set of events (event trace) with two basic
relations: precedence and inclusion

« The MP trace generator produces all possible scenarios of
system behavior up to a scope limit.

 MP model separates component behaviors and component
interactions.

The Innovations

 An executable system architecture model - Monterey
Phoenix scenario generator can produce event traces with
several hundred or small thousands of events

 An event trace visualization framework that enables
human analysts to focus on the behavior of the system and
provides multiple views for different stakeholders

e Mechanisms to run queries on the automatically generated
event traces, and a language for event trace analysis
(assertion checking)

The main MP innovations in BPM

 Traditional business process modeling frameworks
(BPEL, BPMN, UML, IDEF) are constrained by the

“single flowchart” paradigm

* MP separates component behaviors from the
component interaction, and thus provides a
multidimensional picture of concurrent behaviors,
with overlapping threads of process phases and
participating actors

Basic concepts for behavior modeling

Event - any detectable action in system’s or environment’s
behavior

Event trace - set of events with two basic partial ordering
relations, precedence (PRECEDES) and inclusion (IN)

Event grammar - specifies the structure of possible event
traces

A simple pipelfilter architecture pattern
SCHEMA simple _message flow

ROOT Task_A: (*send ¥);
ROOT Task B: (* receive ¥);
COORDINATE $x:send FROM Task A,
$y: receive FROM Task B
DO ADD $x PRECEDES $y; OD;

b)

Task A [——1 Task B

send >> receive

et | a) Example of a composed event trace

b) An architecture view for the schema

Data items as behaviors

Data items are represented by actions that may be performed on that data

SCHEMA Data_flow
ROOQOT Process_1: (* work write *);
ROOQOT Process_2: (* (read | work) *);
ROOT File: (+ write +) (* read *);
Process 1, File SHARE ALL write;
Process 2, File SHARE ALL read;

’

| work }—) write P I

a) Example of a composed
event trace

b) b) An architecture view

Process_1 File Process_2

write read

10

Architecture Verification & Validation

Advantages of Monterey Phoenix approach compared with

the common simulation tools are as follows:

Means to write assertions about the system behavior and tools to
verify those assertions.

Exhaustive search through all possible scenarios (up to the scope
limit).
o The Small Scope Hypothesis: most flaws in models could be
demonstrated on small counterexamples

Integration of the architecture models with environment models for
verifying system’ s behavior on typical scenarios (Use Cases).

Event attributes, like timing, can be used for non-functional
requirements (like performance estimates) V/V and queries (like
critical path estimates in PERT diagrams).

Assigning probabilities to certain events makes it possible to obtain
statistical estimates for system behaviors.

11

Architecture verification & validation

It 1s much easier for different stakeholders to understand
and verify stand-alone scenarios (Use Cases) neither the
complete formal description of the system

Scenario mspection in MP can be automated by assertion
checking tools

Interactions of subsystems and environment can be used
for detecting emerging behaviors of System of Systems

Different views can be automatically extracted and
visualized for different stakeholder needs

12

Model verification within limited scope

®
°
® ®
O
®
Testing: Scope-complete:

All cases within a small

A few cases of arbitrary size
vy bound

13

Implementation

On-line MP editor/trace generator and a set of pre-loaded
examples are available at

http://firebird.nps.edu

MP wiki with Crash Course and reading materials (publicly

available part):
https://wiki.nps.edu/display/MP/Monterey+Phoenix+Home

MP model checking tool was implemented at the National
University of Singapore by Dr. Jin Song Dong’s team

14

Backup slides

IN '

Event grammar

PRECEDES

The rule A:: B C; specifies the event trace A:: (* B *); means an ordered sequence of zero or
more events of the type B.

@ A A
/ \ B R
B C
@ @ B @ O ")
A:. (B | C); denotes alternative A:: {B, C}; denotes a set of events B
and C without an ordering relation between

D AN

16

Integrating environment’ s behavior
SCHEMA ATM_withdrawal
ROOT Customer: (* insert_card
((identification_succeeds request withdrawal (get money | not_sufficient funds)) |
identification_fails) *);

ROOT ATM_system: (* read_card validate id

(id_successful check_balance

((sufficient_balance dispense _money) |
unsufficient_balance)

id_failed) *);

ROOT Data_Base: (* (validate_id | check_balance) *);

Data_Base, ATM_system SHARE ALL validate id, check_balance ;

COORDINATE $x: insert_card FROM Customer,

dy: read_card FROM ATM_system DO ADD $x PRECEDES $y; OD;
COORDINATE $x: request_withdrawal FROM Customer,

$y: check balance FROM ATM_system DO ADD $x PRECEDES $y; OD;
COORDINATE $x: identification_succeeds FROM Customer,

$y: id_successful FROM ATM_system DO ADD $y PRECEDES $x; OD;
COORDINATE $x: get_money FROM Customer,

$y: dispense_money FROM ATM_system DO ADD $y PRECEDES $x; OD;
COORDINATE $x: not_sufficient_funds FROM Customer,

$y: unsufficient_balance FROM ATM_system DO ADD $y PRECEDES $x; OD;
COORDINATE $x: identification_fails FROM Customer,

dy: id_failed FROM ATM_system DO ADD $y PRECEDES $x;0D;

17

Architecture view on the component behavior

!

e |)

v
[insert_card
/N
identification_succeeds identification_fails A view on the Customer
] root event behavior as
request_withdrawal UML ACt|V|ty Di agram
&
N
v 7y
get_money not_sufficient_funds
I. L] Y

!

18

Customer

a)
INSEIT_card [s e s s s sl jdentification_succeeds [*| request withdrawal s s s s s s o | get_money
N f |
read_card validate_id id_successful —_— —)_[check_balance]—b[sufﬁcient_balance]-) dispense_moneyY
\ |
insert_card >> read_card
b request_withdrawal >> check_balance

Customer ATM_system Data_Base

validate_id
check_balance
id_successful >> identification_succeeds
dispense_money >> get_money
insufficient_balance >> not_sufficient_funds
id_failed >> identification_fails

a) An example of event trace (Use Case) for the ATM_withdrawal schema
b) An architecture view for the ATM_withdrawal schema

19

